Neurofibromatosis type 1 (NF1) is caused by mutations in the gene encoding neurofibromin, which negatively regulates Ras signaling. NF1 patients have an increased risk of developing early onset breast cancer, however, the association between NF1 and high grade serous ovarian cancer (HGSOC) is unclear. Since most NF1-related tumors exhibit early biallelic inactivation of , we evaluated the evolution of genetic alterations in HGSOC in an NF1 patient. Somatic variation analysis of whole exome sequencing of tumor samples from both ovaries and a peritoneal metastasis showed a clonal lineage originating from an ancestral clone within the left adnexa, which exhibited copy number (CN) loss of heterozygosity (LOH) in the region of chromosome 17 containing , and A1 and mutation of the other allele. This event led to biallelic inactivation of and and LOH for the germline mutation. Subsequent CN alterations were found in the dominant tumor clone in the left ovary and nearly 100% of tumor at other sites. Neurofibromin modeling studies suggested that the germline mutation could potentially alter protein function. These results demonstrate early, biallelic inactivation of neurofibromin in HGSOC and highlight the potential of targeting RAS signaling in NF1 patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993517PMC
http://dx.doi.org/10.1016/j.gore.2018.01.005DOI Listing

Publication Analysis

Top Keywords

biallelic inactivation
12
clonal lineage
8
high grade
8
grade serous
8
serous ovarian
8
ovarian cancer
8
neurofibromatosis type
8
ras signaling
8
signaling nf1
8
nf1 patients
8

Similar Publications

CIROZ is dispensable in ancestral vertebrates but essential for left-right patterning in humans.

Am J Hum Genet

December 2024

Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia; Department of Physiology, Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. Electronic address:

Four genes-DAND5, PKD1L1, MMP21, and CIROP-form a genetic module that has specifically evolved in vertebrate species that harbor motile cilia in their left-right organizer (LRO). We find here that CIROZ (previously known as C1orf127) is also specifically expressed in the LRO of mice, frogs, and fish, where it encodes a protein with a signal peptide followed by 3 zona pellucida N domains, consistent with extracellular localization. We report 16 individuals from 10 families with bi-allelic CIROZ inactivation variants, which cause heterotaxy with congenital heart defects.

View Article and Find Full Text PDF

Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is an uncommon hereditary form of rickets characterised by chronic renal phosphate loss and impaired bone mineralisation. This results from compound heterozygous or homozygous pathogenic variants in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), a key producer of extracellular inorganic pyrophosphate (PPi) and an inhibitor of fibroblast growth factor23 (FGF23). ENPP1 deficiency impacts FGF23 and increases its activity.

View Article and Find Full Text PDF

The "secondhit" pathway is responsible for biallelic inactivation of many tumor suppressors, where a pathogenic germline allele is joined by somatic mutation of the remaining functional allele. The mechanisms are unresolved, but the human PKD1 tumor suppressor is a good experimental model for identifying the molecular determinants. Inactivation of PKD1 results in autosomal dominant polycystic kidney disease, a very common disorder characterized by the accumulation of fluid-filled cysts and end-stage renal disease.

View Article and Find Full Text PDF

Introduction: Meningiomas are the most common primary central nervous system (CNS) tumor in adults, comprising one-third of all primary adult CNS tumors. Although several recent publications have identified molecular alterations in meningioma including characteristic mutations, copy number alterations, and gene expression signatures, our understanding of the drivers of meningioma recurrence is limited.

Objective: To identify gene expression signatures of 1p22qNF2 meningioma recurrence, with concurrent biallelic inactivation of and loss of chr1p that are heterogenous but enriched for recurrent meningiomas.

View Article and Find Full Text PDF

Mutations in tumor suppressor genes Vhl and Rassf1a cause DNA damage, chromosomal instability and induce gene expression changes characteristic of clear cell renal cell carcinoma.

Kidney Int

December 2024

Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site, Freiburg; Signalling Research Centres BIOSS and CIBSS, Faculty of Biology University of Freiburg, Freiburg, Germany. Electronic address:

RASSF1A is frequently biallelically inactivated in clear cell renal cell carcinoma (ccRCC) due to loss of chromosome 3p and promoter hypermethylation. Here we investigated the cellular and molecular consequences of single and combined deletion of the Rassf1a and Vhl tumor suppressor genes to model the common ccRCC genotype of combined loss of function of RASSF1A and VHL. In mouse embryonic fibroblasts and in primary kidney epithelial cells, double deletion of Rassf1a and Vhl caused chromosomal segregation defects and increased formation of micronuclei, demonstrating that pVHL and RASSF1A function to maintain genomic integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!