Although comparative studies of anuran ontogeny have provided new data on heterochrony in the life cycles of frogs, most of them have not included ossification sequences. Using differential staining techniques, we observe and describe differences and similarities of cranial and postcranial development in two hylid species, (Scinaxinae) and (Hylinae), providing new data of ontogenetic studies in these Colombian species. We examined tadpoles raining from Gosner Stages 25 to 45. We found differences between species in the infrarostral and suprarostral cartilages, optic foramen, planum ethmoidale, and gill apparatus. In both species, the first elements to ossify were the atlas and transverse processes of the vertebral column and the parasphenoid. Both species exhibited suprascapular processes as described in other hylids. Although the hylids comprise a large group (over 700 species), postcranial ossification sequence is only known for 15 species. Therefore, the descriptions of the skeletal development and ossification sequences provided herein will be useful for future analyses of heterochrony in the group.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994159 | PMC |
http://dx.doi.org/10.7717/peerj.4525 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.
View Article and Find Full Text PDFCureus
December 2024
Physical Medicine and Rehabilitation, Unidade Local de Saúde de Lisboa Ocidental, Lisbon, PRT.
Chondrodysplasia punctata (CP) is a rare skeletal dysplasia characterized by punctate calcifications in areas of endochondral ossification, with Conradi-Hünermann-Happle syndrome (CDPX2) being the most common form. This study presents a clinical case of a 10-month-old female child, diagnosed with CDPX2 following a referral from a neonatology department of a secondary hospital center to a genetics consultation at a tertiary hospital center in Portugal. Despite normal prenatal monitoring, postnatal evaluations revealed typical manifestations of the syndrome, including nasomaxillary hypoplasia, macrocephaly, and skeletal abnormalities confirmed through imaging.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Shandong Trauma Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250014, People's Republic of China.
Background: Posttraumatic elbow stiffness is a complex complication with two characteristics of capsular contracture and heterotopic ossification. Currently, genomic mechanisms and pathogenesis of posttraumatic elbow stiffness remain inadequately understood. This study aims to identify differentially expressed genes (DEGs) and elucidate molecular networks of posttraumatic elbow stiffness, providing novel insights into disease mechanisms at transcriptome level.
View Article and Find Full Text PDFGigascience
January 2025
Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, St. Petersburg, 194064, Russia.
Osteogenic differentiation is crucial in normal bone formation and pathological calcification, such as calcific aortic valve disease (CAVD). Understanding the proteomic and transcriptomic landscapes underlying this differentiation can unveil potential therapeutic targets for CAVD. In this study, we employed RNA sequencing transcriptomics and proteomics on a timsTOF Pro platform to explore the multiomics profiles of valve interstitial cells (VICs) and osteoblasts during osteogenic differentiation.
View Article and Find Full Text PDFEur J Clin Invest
January 2025
Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland.
Background: The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored.
Methods: Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!