Synergistic effect of acidity and extraframework position in faujasite on renewable -xylene production.

R Soc Open Sci

Department of Chemical and Petroleum Engineering, United Arab Emirates University, Al-Ain, UAE.

Published: May 2018

p-Xylene is a commodity chemical used for the manufacture of plastic bottles and textiles. For the biomass-based route from 2,5-dimethylfuran (DMF) and ethylene, the properties of the catalyst such as acidity affect product selectivity and catalyst activity. To determine the effect of acidity and extraframework position in faujasite zeolite on p-xylene selectivity, type Y (Si/Al = 40 and Si/Al = 2.55) and X (Si/Al = 1.25) zeolites containing the extraframework Lewis acids Na+, K+, Li+, Ag+ and Cu+, and a Brønsted acid-containing zeolite, HY (Si/Al = 40), were prepared by ion exchange and tested for p-xylene production under solvent-free conditions and low conversions (less than 35%). Here, it is reported that NaX zeolite catalyses DMF and ethylene conversion to p-xylene with 91% selectivity at 30% conversion, which is better than the 25% p-xylene selectivity obtained when using HY at similar conversion. A statistical model and estimation technique, ANOVA, was used to show that there is a synergistic effect between acidity and extraframework position on the rate of p-xylene production. At 7% DMF conversion, Lewis acids were more selective than the Brønsted acid tested (50 versus 30% p-xylene selectivity). p-Xylene selectivity is optimal when using Lewis acids with moderate acidity and extraframework positions located in the faujasite supercage (sites II and III) [corrected].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990767PMC
http://dx.doi.org/10.1098/rsos.172471DOI Listing

Publication Analysis

Top Keywords

acidity extraframework
16
p-xylene selectivity
16
extraframework position
12
lewis acids
12
synergistic acidity
8
position faujasite
8
p-xylene
8
dmf ethylene
8
p-xylene production
8
selectivity
6

Similar Publications

Ti-containing zeotypes, notably titanosilicalite-1 (TS-1), are prominent examples of heterogeneous catalysts that have found applications in selective oxidation processes with hydrogen peroxide. Despite extensive characterization studies including using various probe molecules to interrogate the nature and the local environment of Ti sites, their detailed structure (as well as reactivity) remains elusive. Here, we demonstrate that using low temperature N magic angle spinning (MAS) ssNMR spectroscopy of adsorbed pyridine on TS-1 combined with Ti K-edge XANES on a range of samples (dehydrated, hydrated, contacted with HO and pyridine) provides unique information regarding the Ti sites, highlighting their reactivity and dynamic nature.

View Article and Find Full Text PDF

Revealing the Bro̷nsted Acidic Nature of Penta-Coordinated Aluminum Species in Dealuminated Zeolite Y with Solid-State NMR Spectroscopy.

J Am Chem Soc

October 2024

National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.

The inevitable dealumination process of zeolite Y is closely related to ultrastabilization, enhanced Bro̷nsted acidity, and deactivation throughout its life cycle, producing complex aluminum and acidic hydroxyl species. Most investigations on dehydrated zeolites have focused on the Bro̷nsted acidity of tetra-coordinated Al (Al(IV)) and Lewis acidity associated with tricoordinated Al (Al(III)) sites, which has left the penta-coordinated Al (Al(V)) in dealuminated zeolites scarcely discussed. This is largely due to the oversimplified view of detectable Al(V) as an exclusively extra-framework species with Lewis acidity.

View Article and Find Full Text PDF

This study investigates the reaction pathways and kinetics to comprehend the catalytic cracking of dodecane, a heavy naphtha model compound, over the nanocrystalline ZSM-5 catalyst in the presence and absence of steam with the aim of increasing olefin production. The nanocrystalline zeolite was characterized using XRD and BET, and the surface acidity was measured by NH-TPD and Py-FTIR. The steam treated ZSM-5 contributed to an increase in pore volume with extra-framework alumina, resulting in highly catalytic active sites and hence higher olefin selectivity.

View Article and Find Full Text PDF

The development of stable, highly active, and inexpensive catalysts for the ozone catalytic oxidation of volatile organic compounds (VOCs) is challenging but of great significance. Herein, the micro-coordination environment of Al in commercial Y zeolite was regulated by a specific dealumination method and then the dealuminated Y zeolite was used as the support of Cu-Mn oxides. The optimized catalyst Cu-Mn/DY exhibited excellent performance with around 95% of toluene removal at 30 °C.

View Article and Find Full Text PDF

O Labeling Reveals Paired Active Sites in Zeolite Catalysts.

J Am Chem Soc

September 2022

School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma74078, United States.

Current needs for extending zeolite catalysts beyond traditional gas-phase hydrocarbon chemistry demand detailed characterization of active site structures, distributions, and hydrothermal impacts. A broad suite of homonuclear and heteronuclear NMR correlation experiments on dehydrated H-ZSM-5 catalysts with isotopically enriched O frameworks reveals that at least two types of paired active sites exist, the amount of which depends on the population of fully framework-coordinated tetrahedral Al (Al(IV)-1) and partially framework-coordinated tetrahedral Al (Al(IV)-2) sites, both of which can be denoted as (SiO)-Al(OH). The relative amounts of Al(IV)-1 and Al(IV)-2 sites, and subsequent pairing, cannot be inferred from the catalyst Si/Al ratio, but depend on synthetic and postsynthetic modifications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!