During differentiation transient, inducers produce permanent changes in gene expression. A similar phenomenon, transcriptional hysteresis, produced by transient or prolonged exposure to glucose, leads to cumulative, persistent, and largely irreversible effects on glucose-regulated gene expression, and may drive key aspects of metabolic memory, obesity, diabetes, and aging, and explain the protective effects of dietary restriction during aging. The most relevant effects of glucose-induced transcriptional hysteresis are the persistent effects of elevated glucose on genes that control glucose metabolism itself. A key observation is that, as with the lac operon, glucose induces genes that promote glycolysis and inhibits gene expression of alternative metabolic pathways including the pentose pathway, beta oxidation, and the TCA cycle. A similar pattern of metabolic gene expression is observed during aging, suggesting that cumulative exposure to glucose during aging produces this metabolic shift. Conversely, dietary restriction, which increases lifespan and delays age-related impairments, produces the opposite metabolic profile, leading to a shift away from glycolysis and toward the use of alternative substrates, including lipid and ketone metabolisms. The effect of glucose on gene expression leads to a positive feedback loop that leads to metastable persistent expression of genes that promote glycolysis and inhibit alternative pathways, a phenomenon first observed in the regulation of the lac operon. On the other hand, this pattern of gene expression can also be inhibited by activation of peroxisome proliferator activating receptor transcription factors that promote beta oxidation and inhibit metabolism of glucose-derived carbon bonds in the TCA cycle. Several pathological consequences may arise from glucose-induced transcriptional hysteresis. First, elevated glucose induces glycolytic genes in pancreatic beta cells, which induces a semi-stable persistent increase in insulin secretion, which could drive obesity and insulin resistance, and also due to glucose toxicity could eventually lead to beta-cell decompensation and diabetes. Diabetic complications persist even after complete normalization of glucose, a phenomenon known as metabolic memory. This too can be explained by persistent bistable expression of glucose-induced glycolytic genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985453PMC
http://dx.doi.org/10.3389/fendo.2018.00232DOI Listing

Publication Analysis

Top Keywords

gene expression
24
transcriptional hysteresis
16
glucose-induced transcriptional
12
metabolic memory
12
glucose
9
diabetes aging
8
expression
8
exposure glucose
8
dietary restriction
8
elevated glucose
8

Similar Publications

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.

View Article and Find Full Text PDF

Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.

Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.

View Article and Find Full Text PDF

SMORE: spatial motifs reveal patterns in cellular architecture of complex tissues.

Genome Biol

January 2025

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA.

Deciphering the link between tissue architecture and function requires methods to identify and interpret patterns in spatial arrangement of cells. We present SMORE, an approach to detect patterns in sequential arrangements of cells and examine their associated gene expression specializations. Applied to retina, brain, and embryonic tissue maps, SMORE identifies novel spatial motifs, including one that offers a new mechanism of action for type 1b bipolar cells.

View Article and Find Full Text PDF

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!