Tandem devices combining perovskite and silicon solar cells are promising candidates to achieve power conversion efficiencies above 30% at reasonable costs. State-of-the-art monolithic two-terminal perovskite/silicon tandem devices have so far featured silicon bottom cells that are polished on their front side to be compatible with the perovskite fabrication process. This concession leads to higher potential production costs, higher reflection losses and non-ideal light trapping. To tackle this issue, we developed a top cell deposition process that achieves the conformal growth of multiple compounds with controlled optoelectronic properties directly on the micrometre-sized pyramids of textured monocrystalline silicon. Tandem devices featuring a silicon heterojunction cell and a nanocrystalline silicon recombination junction demonstrate a certified steady-state efficiency of 25.2%. Our optical design yields a current density of 19.5 mA cm thanks to the silicon pyramidal texture and suggests a path for the realization of 30% monolithic perovskite/silicon tandem devices.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-018-0115-4DOI Listing

Publication Analysis

Top Keywords

tandem devices
16
perovskite/silicon tandem
12
monolithic perovskite/silicon
8
solar cells
8
power conversion
8
silicon
6
tandem
5
fully textured
4
textured monolithic
4
tandem solar
4

Similar Publications

Dried blood spot LC-MS/MS quantification of voclosporin in renal transplant recipients using volumetric dried blood spot sampling.

J Pharm Biomed Anal

December 2024

Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Network for Personalized Medicine, Leiden, the Netherlands. Electronic address:

Voclosporin is a potent immunosuppressive agent currently approved for treating active lupus nephritis. Based on its potential antiviral activity, it has also been investigated as immunosuppressive agent in an investigator-initiated study in SARS-CoV2 positive kidney transplant recipients. As with many immunosuppressive agents, optimizing dosing regimens to achieve therapeutic efficacy while minimizing toxicity remains a critical challenge in clinical practice.

View Article and Find Full Text PDF

Machine Learning for Predicting Zearalenone Contamination Levels in Pet Food.

Toxins (Basel)

December 2024

Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China.

Zearalenone (ZEN) has been detected in both pet food ingredients and final products, causing acute toxicity and chronic health problems in pets. Therefore, the early detection of mycotoxin contamination in pet food is crucial for ensuring the safety and well-being of animals. This study aims to develop a rapid and cost-effective method using an electronic nose (E-nose) and machine learning algorithms to predict whether ZEN levels in pet food exceed the regulatory limits (250 µg/kg), as set by Chinese pet food legislation.

View Article and Find Full Text PDF

The proper development of balance is essential in the acquisition of a correct physical condition, as well as in the evolutionary follow-up at early ages, and its periodic evaluation is very relevant in the educational environment. : The objective of this research was to design an accessible web application for static and dynamic balance assessment, based on a force platform and motion analysis software. : The Single leg balance test (SLB), Tandem balance test (TBT), and Y balance test (YBT) were performed on a sample of 75 children aged 6 to 9 years.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (AAV) is one of the main viral vector-based gene therapy platforms. AAV is a virus consisting of a ≈25 nm diameter capsid with a ≈4.7 kb cargo capacity.

View Article and Find Full Text PDF

High-Performance and Stable Perovskite/Organic Tandem Solar Cells Enabled by Interconnecting Layer Engineering.

ACS Nano

December 2024

Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China.

Perovskite/organic tandem solar cells (PO-TSCs) have recently attracted increasing attention due to their high efficiency and excellent stability. The interconnecting layer (ICL) is of great importance for the performance of PO-TSCs. The charge transport layer (CTL) and the charge recombination layer (CRL) that form the ICL should be carefully designed to enhance charge carrier extraction and promote charge carrier recombination balance from the two subcells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!