A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-branched ionic liquid-chitosan as a smart and biocompatible nano-vehicle for combination chemotherapy with stealth and targeted properties. | LitMetric

Multi-branched ionic liquid-chitosan as a smart and biocompatible nano-vehicle for combination chemotherapy with stealth and targeted properties.

Carbohydr Polym

Drug Applied Research Centre, School of Advanced Medical Science, and Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. Electronic address:

Published: September 2018

A possible approach for clinical cancer treatment is combination chemotherapy. To address this issue, many anticancer agents have been used simultaneously to achieve synergistic effects with the different mechanism of actions, however, their toxic side effects are still a big challenge. In this study, a smart, biocompatible, magnetic nanocarrier composed of multi-branched ionic liquid-chitosan grafted mPEG was designed and used for targeted multidrug delivery of DOX and MTX as model anticancer agents to MCF7 breast cancer cells. The results of hemolysis assay on human red blood cells and cytotoxicity studies indicated that blank nanocarrier has no significant hemolytic and cytotoxic effects in MCF7 cells as observed in the results of MTT assay, however, drugs-loaded nanocarrier could decrease the viability of MCF7 cells in a dose-dependent manner. To further simulate the interaction of nanocarrier with plasma proteins, the SDS-PAGE assay was performed after the nanocarrier was incubated with human plasma and the results indicated that a series of proteins were attached to the surface of nanocarrier leading protein-particle corona complex. This complex gives a stealth property as well as increasing cellular uptake process due to the presence of proteins acting as ligands for receptors in the surface of cancer cells that are suitable for drug delivery systems. The efficiency of dual-drug delivery was also confirmed by cellular uptake and DAPI staining. All these results persuade us, this nanocarrier is suitable for use in further animal studies in future investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2018.05.059DOI Listing

Publication Analysis

Top Keywords

multi-branched ionic
8
ionic liquid-chitosan
8
smart biocompatible
8
combination chemotherapy
8
anticancer agents
8
cancer cells
8
mcf7 cells
8
cellular uptake
8
nanocarrier
7
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!