Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A possible approach for clinical cancer treatment is combination chemotherapy. To address this issue, many anticancer agents have been used simultaneously to achieve synergistic effects with the different mechanism of actions, however, their toxic side effects are still a big challenge. In this study, a smart, biocompatible, magnetic nanocarrier composed of multi-branched ionic liquid-chitosan grafted mPEG was designed and used for targeted multidrug delivery of DOX and MTX as model anticancer agents to MCF7 breast cancer cells. The results of hemolysis assay on human red blood cells and cytotoxicity studies indicated that blank nanocarrier has no significant hemolytic and cytotoxic effects in MCF7 cells as observed in the results of MTT assay, however, drugs-loaded nanocarrier could decrease the viability of MCF7 cells in a dose-dependent manner. To further simulate the interaction of nanocarrier with plasma proteins, the SDS-PAGE assay was performed after the nanocarrier was incubated with human plasma and the results indicated that a series of proteins were attached to the surface of nanocarrier leading protein-particle corona complex. This complex gives a stealth property as well as increasing cellular uptake process due to the presence of proteins acting as ligands for receptors in the surface of cancer cells that are suitable for drug delivery systems. The efficiency of dual-drug delivery was also confirmed by cellular uptake and DAPI staining. All these results persuade us, this nanocarrier is suitable for use in further animal studies in future investigations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2018.05.059 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!