Inspired by the supramolecular structure of cellulose, cellulose-gelatin supramolecular hydrogels with high strength and pH-sensitivity were constructed in a basic-based solvent system, ethylene diamine/potassium thiocyanate (EDA/KSCN) with the aid of cyclic freezing-thawing. The investigation on the characteristics of supramolecular hydrogels revealed that repeated freezing-thawing cycles played an important role in the formation of the physical cross-linked supramolecular network structure between cellulose and gelatin. The mechanical properties of supramolecular hydrogels were much higher than pure cellulose and gelatin hydrogel, and the compressive strength was 9.6 times higher than that of pure gelatin hydrogel. The synergistic effect between hydrogen-bonding interaction and the reinforcement of regenerated cellulose nanofibrils (CNF) contributed to the superior mechanical performance. Furthermore, the swelling kinetics tests showed that the supramolecular hydrogels exhibited excellent pH-responsibility, indicating potential applications in biomedical fields. Thus, a straightforward route to construct natural polymer-based hydrogels with supramolecular structure through physical crosslinking strategy without employing hazardous crosslinking agents was developed, paving the way for the design of new types of hydrogels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2018.05.020DOI Listing

Publication Analysis

Top Keywords

supramolecular hydrogels
20
supramolecular
8
cellulose-gelatin supramolecular
8
hydrogels high
8
high strength
8
supramolecular structure
8
structure cellulose
8
cellulose gelatin
8
higher pure
8
gelatin hydrogel
8

Similar Publications

Protein self-assembly allows for the formation of diverse supramolecular materials from relatively simple building blocks. In this study, a single-component self-assembling hydrogel is developed using the recombinant protein CsgA, and its successful application for spinal cord injury repair is demonstrated. Gelation is achieved by the physical entanglement of CsgA nanofibrils, resulting in a self-supporting hydrogel at low concentrations (≥5 mg mL).

View Article and Find Full Text PDF

Most synthetic hydrogels are formed through radical polymerization to yield a homogenous covalent meshwork. In contrast, natural hydrogels form through mechanisms involving both covalent assembly and supramolecular interactions. In this communication, we expand the capabilities of covalent poly(ethylene glycol) (PEG) networks through co-assembly of supramolecular peptide nanofibers.

View Article and Find Full Text PDF

A β-cyclodextrin-based supramolecular photonic crystal hydrogel biosensor with macroporous structures for naked-eye visual detection of cholesterol.

Carbohydr Polym

March 2025

College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China. Electronic address:

Cholesterol (CHO) is an essential lipid in cell membranes and a precursor for vital living substances. Abnormal CHO levels can cause cardiovascular diseases. Therefore, simple and accurate monitoring of CHO levels is crucial for early diagnosis and effective management of cardiovascular diseases.

View Article and Find Full Text PDF

Hydrogels based on supramolecular assemblies offer attractive features for biomedical applications including injectability or versatile combinations of various building blocks. We here investigate a system combining benzenetrispeptides (BTP), which forms supramolecular fibers, with polymer polyethylene oxide (PEO) forming a dense hydrophilic shell around the fibers. Hydrogels are created through the addition of a bifunctional crosslinker (CL).

View Article and Find Full Text PDF

Two-Component Hydrogels Built from Chinese Herbal Medicine-Derived Glycyrrhizic Acid and Puerarin: Assembly Mechanism, Self-Healing Properties, and Selective Antibacterial Activity.

ACS Appl Mater Interfaces

January 2025

Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, P.R.China.

Chinese herbal medicine has offered a great treasure for discovering intrinsically bioactive low molecular weight gelators (LMWGs). Herein, the two-component hydrogels comprising glycyrrhizic acid (GA) and puerarin (PUE), the primary bioactive components, respectively, from herbs and are successfully prepared. Combined spectroscopic characterizations reveal that hydrogen bonds are formed between GA and PUE molecules, which further drives the growth of nanofiber assemblies into gel networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!