A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Magnetic Resonance, Vendor-independent, Intensity Histogram Analysis Predicting Pathologic Complete Response After Radiochemotherapy of Rectal Cancer. | LitMetric

Purpose: The objective of this study is finding an intensity based histogram (IBH) signature to predict pathologic complete response (pCR) probability using only pre-treatment magnetic resonance (MR) and validate it externally in order to create a workflow for the external validation of an MR IBH signature and to apply the model out of the environment where it has been tuned. The impact of pCR and the final predictors on the survival outcome were also evaluated.

Methods And Materials: Three centers using different MR scanners were involved in this retrospective study. The first center recruited 162 patients for model training, and the second and third centers provided 34 plus 25 patients for external validation. Patients provided written consent. Accrual period was from May 2008 to December 2014. After surgery pathologic response was defined. T2-weighted MR scans acquired before chemoradiation therapy (CRT) were used for analysis addressed on primary lesions. Images were pre-processed using Laplacian of Gaussian (LoG) filter with multiple σ, and first order intensity histogram-based features (kurtosis, skewness, and entropy) were extracted. Features selection was performed using Mann-Whitney test. Tumor staging (cT, cN) was added to build a logistic regression model and predict pCR. Model performance was evaluated with internal and external validation using area under the curve (AUC) of the receiver operator characteristic (ROC) and calibration with Hosmer-Lemeshow test. The linear cross-correlation matrix (Pearson's coefficient) and the variance inflation factor (VIF) were used to check the correlation and the co-linearity among the final predictors. The amount of the information added through the radiomics features was estimated by using the DeLong's test, and the impact of pCR and the final predictors on survival outcomes were evaluated through the Kaplan-Meier curves by using the log-rank test and the multivariate Cox model.

Results: Candidate-to-analysis features were skewness (σ = 0.485, P value = .01) and entropy (σ = 0.344, P value < .05). Logistic regression analysis showed as significant covariates cT (P value < .01), skewness-σ = 0.485 (P value = .01), and entropy-σ = 0.344 (P value < .05). Model AUCs were 0.73 (internal) and 0.75 (external).

Conclusions: This MR-based, vendor-independent model can be helpful for predicting pCR probability in locally advanced rectal cancer (LARC) patients only using pre-treatment imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2018.04.065DOI Listing

Publication Analysis

Top Keywords

external validation
12
final predictors
12
magnetic resonance
8
pathologic complete
8
complete response
8
ibh signature
8
impact pcr
8
pcr final
8
predictors survival
8
resonance vendor-independent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!