The Internet of Things (IoT) utilizes algorithms to facilitate intelligent applications across cities in the form of smart-urban projects. As the majority of devices in IoT are battery operated, their applications should be facilitated with a low-power communication setup. Such facility is possible through the Low-Power Wide-Area Network (LPWAN), but at a constrained bit rate. For long-range communication over LPWAN, several approaches and protocols are adopted. One such protocol is the Long-Range Wide Area Network (LoRaWAN), which is a media access layer protocol for long-range communication between the devices and the application servers via LPWAN gateways. However, LoRaWAN comes with fewer security features as a much-secured protocol consumes more battery because of the exorbitant computational overheads. The standard protocol fails to support end-to-end security and perfect forward secrecy while being vulnerable to the replay attack that makes LoRaWAN limited in supporting applications where security (especially end-to-end security) is important. Motivated by this, an enhanced LoRaWAN security protocol is proposed, which not only provides the basic functions of connectivity between the application server and the end device, but additionally averts these listed security issues. The proposed protocol is developed with two options, the Default Option (DO) and the Security-Enhanced Option (SEO). The protocol is validated through Burrows⁻Abadi⁻Needham (BAN) logic and the Automated Validation of Internet Security Protocols and Applications (AVISPA) tool. The proposed protocol is also analyzed for overheads through system-based and low-power device-based evaluations. Further, a case study on a smart factory-enabled parking system is considered for its practical application. The results, in terms of network latency with reliability fitting and signaling overheads, show paramount improvements and better performance for the proposed protocol compared with the two handshake options, Pre-Shared Key (PSK) and Elliptic Curve Cryptography (ECC), of Datagram Transport Layer Security (DTLS).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021832PMC
http://dx.doi.org/10.3390/s18061888DOI Listing

Publication Analysis

Top Keywords

proposed protocol
12
protocol
10
security
9
enhanced lorawan
8
lorawan security
8
security protocol
8
case study
8
study smart
8
smart factory-enabled
8
factory-enabled parking
8

Similar Publications

The presence of a positive deep surgical margin in tongue squamous cell carcinoma (TSCC) significantly elevates the risk of local recurrence. Therefore, a prompt and precise intraoperative assessment of margin status is imperative to ensure thorough tumor resection. In this study, we integrate Raman imaging technology with an artificial intelligence (AI) generative model, proposing an innovative approach for intraoperative margin status diagnosis.

View Article and Find Full Text PDF

Background: Low rates of adolescent and young adult (YA; aged 15-39 y) clinical trial enrollment (CTE), particularly among underserved groups, have resulted in a lack of standardized cancer treatments and follow-up guidelines for this group that may limit improvement in cancer treatments and survival outcomes for YAs.

Objective: To understand and address unique barriers to CTE, we conducted focus groups to learn about informational, financial, and psychosocial needs of YAs surrounding CTE and identify strategies to address these barriers.

Methods: We conducted 5 focus groups in 2023 among a diverse sample of YA patients from across the United States.

View Article and Find Full Text PDF

Theoretical and practical considerations for validating antigen-specific B cell ImmunoSpot assays.

J Immunol Methods

January 2025

Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA. Electronic address:

Owing to their ability to reliably detect even very rare antigen-specific B cells in cellular isolates such as peripheral blood mononuclear cells (PBMC), and doing so robustly in a high throughput-compatible manner, B cell ELISPOT/FluoroSpot (collectively "B cell ImmunoSpot") tests have become increasingly attractive for immune monitoring in regulated settings. Presently, there are no guidelines for the qualification and validation of B cell ImmunoSpot assay results. Here, we propose such guidelines, building on the experience acquired from T cell ImmunoSpot testing in an environment adhering to the requirements of regulatory bodies yet taking the unique features of B cell assays into account.

View Article and Find Full Text PDF

Purpose: Diffusion-weighted arterial spin labeling (DW-ASL) MRI has been proposed to determine the rate of water exchange (K) across the blood brain barrier (BBB). This study aims to further evaluate K MRI by comparing it with standard dynamic contrast-enhanced (DCE) MRI and histology in association with mannitol-induced disruption of the BBB.

Methods: DW-ASL was measured using a multiple b-value MRI protocol in normal rats at three post-labeling delays (N = 19), before and after intra-carotid injection of mannitol to disrupt BBB in one hemisphere (N = 13).

View Article and Find Full Text PDF

An adverse outcome pathway (AOP) framework maps the sequence of events leading to adverse outcomes from chemical exposures, providing a mechanistic understanding often absent in traditional methods. The quantitative AOP (qAOP) advances AOP by integrating quantitative data and mathematical modeling, thereby providing a more precise comprehension of relationships between molecular initiating events, key events, and adverse outcomes. This review critically examines three primary methodologies: systems toxicology, regression modeling, and Bayesian network modeling, highlighting their strengths, limitations, and specific data requirements within toxicology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!