CH concentrations and fluxes in a subtropical metropolitan river network: Watershed urbanization impacts and environmental controls.

Sci Total Environ

State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China; College of Resources and Environmental Science, Chongqing University, Chongqing 400030, China.

Published: May 2018

Urbanization and greenhouse gas emissions are of great global concern, especially in developing countries such as China. However, little is known about the relationship between the two. In this study, we examined the influences of the urbanization of Chongqing Municipality, which covers an area of 5494km, in China, on the CH emissions of in its metropolitan river network. The results from 84 sampling locations showed an overall mean CH concentration of 0.69±1.37μmol·L and a CH flux from the river network of 1.40±2.53mmolCHmd. The CH concentrations and fluxes presented a clear seasonal pattern, with the highest value in the spring and the lowest in the summer. Such seasonal variations were probably co-regulated by the dilution effect, temperature and supply of fresh organic matter by algal blooms. Another important result was that the CH concentrations and fluxes increased with the degree of urbanization or the proportion of urban land use, being approximately 3-13 times higher in urban and suburban areas than in rural ones. The total nitrogen, dissolved oxygen (O%) and possible sewage discharge, which could affect the in situ CH production and exogenous CH input respectively, were important factors that influenced the spatial patterns of CH in human-dominated river networks, while the nitrogen (N) and phosphorus (P) could be good predictors of the CH emissions in urban watersheds. Hydrologic drivers, including bottom sediment type, flow velocity and river width, were strongly correlated with the CH concentrations and could also affect the spatial variance and predict the CH hotspots in such metropolitan river networks. With increasing urbanization, we should pay more attention to the increasing greenhouse gas emissions associated with urbanization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.12.054DOI Listing

Publication Analysis

Top Keywords

concentrations fluxes
12
metropolitan river
12
river network
12
greenhouse gas
8
gas emissions
8
river networks
8
river
6
urbanization
6
concentrations
4
fluxes subtropical
4

Similar Publications

Optical characterization of dissolved organic carbon (DOC) freshly collected from the circumneutral "white water" of the Rio Solimoes revealed that it had lower aromaticity, lower molecular weight, and a greater autochthonous content than DOC from the acidic "black water" of the Rio Negro. The tambaqui (Colossoma macropomum), a characid member of the Serrasalmidae, is a model neotropical fish that migrates annually between the two rivers. We analysed ionoregulatory responses of the tambaqui over 24 h in ion-poor water at pH 7.

View Article and Find Full Text PDF

Radon on Mars and the Moon derived from Martian and lunar meteorites.

Sci Rep

January 2025

Institut de Recherche en Astrophysique et Planétologie, UPS/CNRS/CNES, F-31400, Toulouse, France.

The radioactive gas radon-222, a fluid and aerosol tracer in Earth's lithosphere and atmosphere, can also reveal subtle rock physics processes in extraterrestrial environments, such as those involving water, but remains poorly constrained in planetary bodies due to the limited number of samples available. Here we measure the effective radium-226 concentration (EC) of six Martian and nine lunar meteorites to derive radon source terms for Martian and lunar rocks. EC values are 0.

View Article and Find Full Text PDF

Thawing Arctic permafrost can induce hydrologic change and alter redox conditions, shifting the balance of soil organic matter (SOM) decomposition. There remains uncertainty about how soil saturation and redox transitions impact dissolved and gas phase carbon fluxes, and efforts to link hydrobiogeochemical processes to ecosystem-scale models are limited. This study evaluates SOM decomposition of Arctic tundra soils using column experiments, water chemistry measurements, microbial community analysis, and a PFLOTRAN reactive transport model.

View Article and Find Full Text PDF

This study provides a review of 13 oceanographic campaigns between 2000 and 2017 to measure Hg in the Mediterranean, highlighting major findings from measurement and modelling activities during the Med-Oceanor program. The initial campaigns showed that high concentrations of RGM could be found far from industrial source regions and the observed daily variation in concentration, with peaks at midday and lower concentrations during darkness gave the first indications that photochemically mediated oxidation reactions were producing RGM in the MBL. Later atmospheric chemistry modelling studies showed the feasibility of Hg oxidation by bromine containing oxidants, which are released as a result of the acidification of sea salt aerosols in the Marine Boundary Layer (MBL).

View Article and Find Full Text PDF

Vegetation-climate feedbacks across scales.

Ann N Y Acad Sci

January 2025

Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, Germany.

Vegetation is often viewed as a consequence of long-term climate conditions. However, vegetation itself plays a fundamental role in shaping Earth's climate by regulating the energy, water, and biogeochemical cycles across terrestrial landscapes. It exerts influence by consuming water resources through transpiration and interception, lowering atmospheric CO concentration, altering surface roughness, and controlling net radiation and its partitioning into sensible and latent heat fluxes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!