The rostral medulla of bullfrog tadpoles contains critical lung rhythmogenic and chemosensitive regions across metamorphosis.

Comp Biochem Physiol A Mol Integr Physiol

Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, United States; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, United States; Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States.

Published: November 2018

The development of amphibian breathing provides insight into vertebrate respiratory control mechanisms. Neural oscillators in the rostral and caudal medulla drive ventilation in amphibians, and previous reports describe ventilatory oscillators and CO sensitive regions arise during different stages of amphibian metamorphosis. However, inconsistent findings have been enigmatic, and make comparisons to potential mammalian counterparts challenging. In the current study we assessed amphibian central CO responsiveness and respiratory rhythm generation during two different developmental stages. Whole-nerve recordings of respiratory burst activity in cranial and spinal nerves were made from intact or transected brainstems isolated from tadpoles during early or late stages of metamorphosis. Brainstems were transected at the level of the trigeminal nerve, removing rostral structures including the nucleus isthmi, midbrain, and locus coeruleus, or transected at the level of the glossopharyngeal nerve, removing the putative buccal oscillator and caudal medulla. Removal of caudal structures stimulated the frequency of lung ventilatory bursts and revealed a hypercapnic response in normally unresponsive preparations derived from early stage tadpoles. In preparations derived from late stage tadpoles, removal of rostral or caudal structures reduced lung burst frequency, while CO responsiveness was retained. Our results illustrate that structures within the rostral medulla are capable of sensing CO throughout metamorphic development. Similarly, the region controlling lung ventilation appears to be contained in the rostral medulla throughout metamorphosis. This work offers insight into the consistency of rhythmic respiratory and chemosensitive capacities during metamorphosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128350PMC
http://dx.doi.org/10.1016/j.cbpa.2018.05.024DOI Listing

Publication Analysis

Top Keywords

rostral medulla
12
rostral caudal
8
caudal medulla
8
transected level
8
nerve removing
8
caudal structures
8
preparations derived
8
stage tadpoles
8
rostral
6
metamorphosis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!