φ-evo: A program to evolve phenotypic models of biological networks.

PLoS Comput Biol

Physics Department, McGill University, Montreal, Québec, Canada.

Published: June 2018

Molecular networks are at the core of most cellular decisions, but are often difficult to comprehend. Reverse engineering of network architecture from their functions has proved fruitful to classify and predict the structure and function of molecular networks, suggesting new experimental tests and biological predictions. We present φ-evo, an open-source program to evolve in silico phenotypic networks performing a given biological function. We include implementations for evolution of biochemical adaptation, adaptive sorting for immune recognition, metazoan development (somitogenesis, hox patterning), as well as Pareto evolution. We detail the program architecture based on C, Python 3, and a Jupyter interface for project configuration and network analysis. We illustrate the predictive power of φ-evo by first recovering the asymmetrical structure of the lac operon regulation from an objective function with symmetrical constraints. Second, we use the problem of hox-like embryonic patterning to show how a single effective fitness can emerge from multi-objective (Pareto) evolution. φ-evo provides an efficient approach and user-friendly interface for the phenotypic prediction of networks and the numerical study of evolution itself.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013240PMC
http://dx.doi.org/10.1371/journal.pcbi.1006244DOI Listing

Publication Analysis

Top Keywords

program evolve
8
molecular networks
8
pareto evolution
8
networks
5
φ-evo
4
φ-evo program
4
evolve phenotypic
4
phenotypic models
4
models biological
4
biological networks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!