In skeletal muscle, interactions between contractile and connective tissue elements at multiple scales result in emergent properties that determine mechanical performance. One of these phenomena is architectural gearing, which is quantified as the ratio of muscle velocity to muscle fiber velocity. Many pennate muscles operate with a gear ratio greater than one because muscles shorten through a combination of muscle fiber shortening and fiber rotation. Within a muscle, gearing is variable across contractions. During low force contractions, muscles operate at high gear while muscles operate at low gear during high force contractions. This variable gearing has a significant impact on muscle performance as muscle architectural changes favor muscle speed during fast contractions and muscle force during slow, high force contractions. We hypothesize that gearing in any given contraction is determined by the dynamic interaction of fiber-generated forces, fluid force transmission, and the elastic behavior of intramuscular connective tissues. Because muscle is isovolumetric, muscle fibers must bulge radially when they shorten. Radial bulging and fiber-generated forces off-axis from the muscle line of action exert forces that load connective tissues that ensheath fibers, fascicles, and the whole muscle. The way in which fluid pressures and fiber forces interact to load connective tissues in three-dimensions remains poorly understood because of the complex and multiscale nature of these interactions. Here we review evidence for variable gearing in pennate muscles, present a conceptual model that describes the fundamental interactions that determine gearing, and discuss where gaps remain in our understanding of the determinants and consequences of muscle shape change and variable gearing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104701 | PMC |
http://dx.doi.org/10.1093/icb/icy054 | DOI Listing |
BMC Sports Sci Med Rehabil
January 2025
Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, Wiener Neustadt, 2700, Austria.
Background: Isokinetic dynamometry is a common tool for evaluating muscle function and is used across various disciplines. Technical advancements have shifted focus towards multi-joint exercises such as the leg press, offering insights into practical human movement dynamics. However, previous reproducibility studies have focused predominantly on single-joint exercises, warranting investigations into the reliability of multi-joint exercises.
View Article and Find Full Text PDFMol Med
January 2025
The First People's Hospital of Lin'an District, No. 360, Yikang Street, Jinnan Subdistrict, Lin'an District, Hangzhou, Zhejiang, 311300, China.
Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
Aberrant autophagy in vascular smooth muscle cells (VSMCs) is associated with the progression of vascular remodeling diseases caused by neointimal hyperplasia. Platelet-derived growth factor-BB (PDGF-BB)-induced vascular remodeling is accompanied by autophagy activation, however, the involvement of circular RNAs (circRNAs) remains unclear. Here, we show the role of PDGF-BB-regulated hsa_circ_0001304 (circ-1304) in neointimal hyperplasia and its potential involvement in VSMC autophagy, while also elucidating the potential mechanisms.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China.
Stress urinary incontinence (SUI) currently lacks effective treatment options, and the restoration of neurological function remains a major challenge, with unmet clinical needs. Research has indicated that adipose-derived stem cells (ADSCs) can be induced to differentiate into neural-induced adipose-derived stem cells (NI-ADSCs) under specific inductive conditions, exhibiting excellent neuroregenerative capabilities. ADSCs were obtained from female SD rats and induced into NI-ADSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!