Background: Contralesional 'drop foot' after stroke is usually treated with an ankle-foot orthosis (AFO). However, AFOs may hamper ankle motion during stance. Peroneal functional electrical stimulation (FES) is an alternative treatment that provides active dorsiflexion and allows normal ankle motion. Despite this theoretical advantage of FES, the kinematic and kinetic differences between AFO and FES have been scarcely investigated.
Objective: To test whether walking with implanted FES leads to improvements in stance stability, propulsion, and swing initiation compared to AFO.
Methods: A 4-channel peroneal nerve stimulator (ActiGait ®) was implanted in 22 chronic patients after stroke. Instrumented gait analyses were performed during comfortable walking up to 26 weeks (n = 10) or 52 weeks (n = 12) after FES-system activation. Kinematics of knee and ankle (stance and swing phase) and kinetics (stance phase) of gait were determined, besides spatiotemporal parameters. Finally, we determined whether differences between devices regarding late stance kine(ma)tics correlated with those regarding the swing phase.
Results: In mid-stance, knee stability improved as the peak knee extension velocity was lower with FES (β = 18.1°/s, p = 0.007), while peak ankle plantarflexion velocity (β = -29.2°/s, p = 0.006) and peak ankle plantarflexion power (β = -0.2 W/kg, p = 0.018) were higher with FES compared to AFO. With FES, the ground reaction force (GRF) vector at peak ankle power (i.e., 'propulsion') was oriented more anteriorly (β = -1.1°, p = 0.001). Similarly, the horizontal GRF (β = -0.8% body mass, p = 0.003) and gait speed (β = 0.03 m/s, p = 0.015) were higher. An increase in peak ankle plantarflexion velocity and a more forward oriented GRF angle during late stance were moderately associated with an increase in hip flexion velocity during initial swing (rs = 0.502, p = 0.029 and rs = 0.504, p = 0.028, respectively).
Conclusions: This study substantiates the evidence that implantable peroneal FES as a treatment for post-stroke drop foot may be superior over AFO in terms of knee stability, ankle plantarflexion power, and propulsion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/RNN-180822 | DOI Listing |
Gait Posture
December 2024
Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
Background: Carbon fiber custom dynamic orthoses have been used to improve gait mechanics after lower limb trauma in military service members, with the goal of restoring function and improving outcomes. However, the effects of commercially available carbon fiber orthoses available to civilians on lower extremity joint kinetics and kinematics are poorly understood.
Research Question: The aim of this study was to examine the effect of two commercially available orthoses on lower extremity kinematics and kinetics in individuals with lower limb trauma.
Sports Biomech
January 2025
School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, OH, USA.
Increasing cadence is an intervention to reduce injury risk for adolescent long-distance runners. It is unknown how adolescents respond biomechanically when running with a higher than preferred cadence. We examined the influence of increasing cadence on peak joint angles, moments and powers, and ground reaction forces in long-distance runners.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Swiss Federal Institute of Sport Magglingen SFISM, 2532 Magglingen, Switzerland.
Background: This study examines genetic variations in the systemic oxygen transport cascade during exhaustive exercise in physically trained tactical athletes. Research goal: To update the information on the distribution of influence of eleven polymorphisms in ten genes, namely ACE (rs1799752), AGT (rs699), MCT1 (rs1049434), HIF1A (rs11549465), COMT (rs4680), CKM (rs8111989), TNC (rs2104772), PTK2 (rs7460 and rs7843014), ACTN3 (rs1815739), and MSTN (rs1805086)-on the connected steps of oxygen transport during aerobic muscle work.
Methods: 251 young, healthy tactical athletes (including 12 females) with a systematic physical training history underwent exercise tests, including standardized endurance running with a 12.
Exp Physiol
January 2025
Strength and Conditioning Research Laboratory, College of Physical Education, University of Brasília, Brasília, Brazil.
This study examined the acute effects of dynamic stretching at different velocities on the neuromuscular system. Fourteen participants underwent four experimental sessions in random order: (1) control (lying at rest with the ankle in a neutral position); (2) slow velocity dynamic stretching (50 beats/min; SLOW); (3) moderate velocity dynamic stretching (70 beats/min; MOD); and (4) fast velocity dynamic stretching (90 beats/min; FAST). The stretching protocols consisted of four sets of 10 repetitions and targeted the plantar flexor muscles of the right ankle.
View Article and Find Full Text PDFJ Appl Biomech
January 2025
Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.
This study compares joint kinematics and kinetics of young stroke survivors who walk <0.79 m/s (slow) or >0.80 m/s (fast) with reference to a healthy able-bodied group and provides clinical recommendations for guiding the gait rehabilitation of stroke survivors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!