[Mitophagy and myocardial protection].

Sheng Li Ke Xue Jin Zhan

Published: June 2016

Download full-text PDF

Source

Publication Analysis

Top Keywords

[mitophagy myocardial
4
myocardial protection]
4
[mitophagy
1
protection]
1

Similar Publications

Enhanced glycolysis and elevated lactic acid (LA) production are observed during sudden death syndrome (SDS) in broilers. However, the mechanism underlying LA-induced cardiomyocyte damage and heart failure in fast-growing broilers remains unclear. In this study, chicken embryo cardiomyocytes (CECs) were cultured and treated with LA to investigate LA-induced CEC injury and its mechanism, aiming to develop strategies to prevent LA-induced SDS in broilers.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial fission and mitophagy are crucial for understanding myocardial ischemia-reperfusion (IR) injury, but their regulatory mechanisms are not well understood.
  • Elevated Nr4a1 levels after myocardial IR injury correlate with worse cardiac function, increased cell death, inflammation, and endothelial issues, while Nr4a1-knockout mice show protection and better mitochondrial health.
  • Targeting Nr4a1 to balance mitochondrial fission and mitophagy could provide new therapeutic options to improve heart health during ischemic conditions.
View Article and Find Full Text PDF

This study investigates the role of Fundc1 in cardiac protection under high-altitude hypoxic conditions and elucidates its underlying molecular mechanisms. Using cardiomyocyte-specific knockout ( ) mice, we demonstrated that deficiency exacerbates cardiac dysfunction under simulated high-altitude hypoxia, manifesting as impaired systolic and diastolic function. Mechanistically, we identified that Fundc1 regulates cardiac function through the mitochondrial unfolded protein response (mito-UPR) pathway.

View Article and Find Full Text PDF

The influence of the mitochondrial control system on ischemic heart disease has become a major focus of current research. Mitophagy, as a very crucial part of the mitochondrial control system, plays a special role in ischemic heart disease, unlike mitochondrial dynamics. The published reviews have not explored in detail the unique function of mitophagy in ischemic heart disease, therefore, the aim of this paper is to summarize how mitophagy regulates the progression of ischemic heart disease.

View Article and Find Full Text PDF

The occurrence of severe myocardial ischemia/reperfusion (I/R) injury is associated with the clinical application of reestablishment technique for heart disease, and understanding its underlying mechanisms is currently an urgent issue. Prior investigations have demonstrated the potential enhancement of MIRI through EGR1 suppression, although the precise underlying regulatory pathways require further elucidation. The core focus of this investigation is to examine the molecular pathways through EGR1 regulates mitophagy-mediated myocardial cell pyroptosis and its impact on MIRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!