A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of neurologic deterioration based on support vector machine algorithms and serum osmolarity equations. | LitMetric

Objective: Dehydration on admission is correlated with neurological deterioration (ND). The primary objective of our study was to use support vector machine (SVM) algorithms to identify an ND prognostic model, based on dehydration equations.

Methods: This study included a total of 382 patients hospitalized with acute ischemic stroke. The following parameters were recorded: age, sex, laboratory values (serum sodium, potassium, chlorinum, glucose, and urea), and vascular risk factor data. Receiver operating characteristic (ROC) curve analysis was used to evaluate the discriminative performance of the BUN/Cr ratio as well as each of 38 equations for predicting ND. We used the Boruta algorithm for feature selection. After optimizing the SVM kernel parameters, we built an SVM model to predict ND and used the test set to obtain predictive values for assessing model accuracy.

Results: In total, 102 of 382 patients (26.7%) with acute ischemic stroke developed ND. In all patients, the BUN/Cr ratio and each of 38 equations were significant predictors of ND. Equation 20 [1.86 × Na+ + glucose + urea + 9] yielded the maximum area under the ROC curve, and faired best in terms of prognostic performance (a cutoff value of 284.49 mM yielded a sensitivity of 94.12% and specificity of 61.43%). Equation 32 predicted ND poststroke across population groups, and worked well in older as well as young adults; (a cutoff value of 297.08 mM yielded a sensitivity of 93.14% and specificity of 60.00%). Feature selection by the Boruta algorithm was used to decrease the number of variables from 18 to 5 in the condition. The specificity of test samples for the SVM prediction model increased from 44.1% to 89.4%, and the AUC increased from 0.700 to 0.927.

Conclusions: SVM algorithms can be used to establish a prediction model for dehydration-associated ND, with good classification results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043694PMC
http://dx.doi.org/10.1002/brb3.1023DOI Listing

Publication Analysis

Top Keywords

support vector
8
vector machine
8
svm algorithms
8
382 patients
8
acute ischemic
8
ischemic stroke
8
roc curve
8
bun/cr ratio
8
boruta algorithm
8
feature selection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!