The aim of this study was to investigate the local production of proinflammatory cytokines, pain-related sensory innervation of dorsal-root ganglia (DRG), and spinal changes in a rat model of induced hip osteoarthritis (OA). Seventy-five Sprague-Dawley rats were used, including 25 controls and 50 injected into the right hip joints (sham group, injected with 25 µl of sterile saline: N = 25; and monosodium iodoacetate (MIA) group, injected with 25 µl of sterile saline with 2 mg of MIA: N = 25). We measured the local production of TNF-α, immunoreactive (-ir) neurons for calcitonin gene-related peptide (CGRP), and growth associated protein-43 (GAP-43) in DRG, and immunoreactive neurons for ionized-calcium-binding adaptor molecule-1 (Iba-1) in the dorsal horn of spinal cord, on post-induction days 7, 14, 28, 42, and 56 (N = 5 rats/group/time point). For post-induction days 7-42, the MIA group presented significantly elevated concentrations of TNF-α than the other groups (p < 0.01), and a higher expression of CGRP-ir in FG-labeled DRG neurons than the sham group (p < 0.01). MIA rats also presented significantly more FG-labeled GAP-43-ir DRG neurons than the sham group on post-induction days 28, 42, and 56 (p < 0.05), and a significantly higher number of Iba-1-ir microglia in the ipsilateral dorsal horn than the other groups, on post-induction days 28, 42, and 56. The results suggest that in rat models, pain-related pathologies due to MIA-induced hip OA, originate from inflammation caused by cytokines, which leads to progressive, chronic neuronal damage that may cause neuropathic pain. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2978-2986, 2018.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.24065DOI Listing

Publication Analysis

Top Keywords

proinflammatory cytokines
8
hip osteoarthritis
8
local production
8
group injected
8
injected 25 µl
8
25 µl sterile
8
sterile saline
8
mia group
8
post-induction days
8
changes proinflammatory
4

Similar Publications

MC-LR induces and exacerbates Colitis in mice through the JAK1/STAT3 pathway.

J Toxicol Environ Health A

January 2025

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.

Inflammatory bowel disease (IBD) is a complex gastrointestinal disorder attributed to genetic and environmental factors. Microcystin-leucine-arginine (MC-LR) is an environmental toxin that accumulates in the gut and produces intestinal damage. The aim of this study was to investigate the effects of exposure to MC-LR on development and progression of IBD as well examine the underlying mechanisms of microcystin-initiated tissue damage.

View Article and Find Full Text PDF

The Role of Inflammatory Parameters and Antibody Seroconversion on COVID-19 Outcomes in Patients with Central Obesity.

Acta Med Indones

October 2024

1. Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Faculty of Medicine Universitas Indonesia-Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia. 2. Metabolic Disorder, Cardiovascular and Aging Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia..

Background: Central obesity increases the risk of developing poor outcomes of COVID-19. The pro-inflammatory state and antibody dysfunction are thought to contribute to poor outcomes; however, the evidence is unclear.

Methods: This is a cohort study among COVID-19 patients with central obesity in Dr.

View Article and Find Full Text PDF

Moxifloxacin plus Cordyceps polysaccharide ameliorate intestinal barrier damage due to abdominal infection via anti-inflammation and immune regulation under simulated microgravity.

Life Sci Space Res (Amst)

February 2025

Department of General Surgery, the 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, PR China; Department of General Surgery, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China. Electronic address:

Background: Currently, there is limited research on the impact of abdominal infection on intestinal damage under microgravity conditions. Cordyceps polysaccharide (CPS), the main active ingredient of Cordyceps, has demonstrated various pharmacological effects, including anti-inflammatory, antioxidant, and immunomodulatory properties. Moxifloxacin (MXF) is a fourth-generation quinolone antibiotic that is believed to have a dual regulatory effect on immune system activation and suppression.

View Article and Find Full Text PDF

Background: A number of immunotherapeutic approaches have been developed and are entering the clinic. Bispecific antibodies (BsAbs) are one of these modalities and induce robust efficacy by endogenous T cells in several hematological malignancies. However, most of the treated patients experience only a temporary benefit.

View Article and Find Full Text PDF

Exogenous L-fucose attenuates depression induced by chronic unpredictable stress: implicating core fucosylation has an antidepressant potential.

J Biol Chem

January 2025

Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan. Electronic address:

Core fucosylation is one of the most essential modifications of the N-glycans, catalyzed by α1,6-fucosyltransferase (Fut8), which transfers fucose from guanosine 5'-diphosphate (GDP)-fucose to the innermost N-acetylglucosamine residue of N-glycans in an α1-6 linkage. Our previous studies demonstrated that lipopolysaccharide (LPS) can induce a more robust neuroinflammatory response in Fut8 homozygous knockout (KO) (Fut8) and heterozygous KO (Fut8) mice contrasted to the wild-type (Fut8) mice. Exogenous administration of L-fucose suppressed LPS-induced neuroinflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!