Coarse-grained molecular dynamics simulations of polymerization with forward and backward reactions.

J Comput Chem

KU Leuven Department of Computer Science, Celestijnenlaan 200A, Leuven, 3001, Belgium.

Published: August 2018

We develop novel parallel algorithms that allow molecular dynamics simulations in which byproduct molecules are created and removed because of the chemical reactions during the molecular dynamics simulation. To prevent large increases in the potential energy, we introduce the byproduct molecules smoothly by changing the non-bonded interactions gradually. To simulate complete equilibrium reactions, we allow the byproduct molecules attack and destroy created bonds. Modeling of such reactions are, for instance, important to study the pore formation due to the presence of e.g. water molecules or development of polymer morphology during the process of splitting off byproduct molecules. Another concept that could be studied is the degradation of polymeric materials, a very important topic in a recycling of polymer waste. We illustrate the method by simulating the polymerization of polyethylene terephthalate (PET) at the coarse-grained level as an example of a polycondensation reaction with water as a byproduct. The algorithms are implemented in a publicly available software package and are easily accessible using a domain-specific language that describes chemical reactions in an input configuration file. © 2018 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.25348DOI Listing

Publication Analysis

Top Keywords

byproduct molecules
16
molecular dynamics
12
dynamics simulations
8
chemical reactions
8
reactions
5
byproduct
5
molecules
5
coarse-grained molecular
4
simulations polymerization
4
polymerization forward
4

Similar Publications

The Role of Biosilica and Its Potential for Sensing Technologies: A Review.

J Biotechnol

December 2024

Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil; Process Engineering Graduate Program (PEP), Tiradentes University, Aracaju, Sergipe, Brazil.

Efficiently managing agricultural waste while innovating to derive value-added products is a significant challenge in the 21 century. In recent decades, these by-products have been increasingly explored as alternative sources for materials such as biosilica. Biosilica is renowned for its high surface area, biocompatibility, chemical stability, and modifiable surface, which makes it suitable for various applications.

View Article and Find Full Text PDF

Grape pomace (GP), a by-product of the wine supply chain process, contains bioactive molecules with known healthy properties. This study examines the impact of different extraction techniques on three GPs of Aglianico cultivar [Cantine del Notaio, Barile, and Torrecuso]. Five eco-friendly extractive techniques [maceration (MAC), digestion (DIG), accelerated solvent extraction (ASE), microwaves (MW), and ultrasound (US)] were used with 50 % ethanol/water as solvent.

View Article and Find Full Text PDF

We reported, herein, the fabrication of a Cu(II) Schiff base metal complex, immobilized on chitosan surface coated on NiFeO MNPs, intended as a novel heterogeneous and magnetically recyclable nanocatalyst, NiFeO@CS@CuSB. The synthesis process starts with the preparation of NiFeO MNPs followed by coating with chitosan and then subsequent immobilization of the Cu(II) Schiff base metal complex on its surface. Through comprehensive characterization of the prepared nanocatalyst using FT-IR, PXRD, SEM, EDS, TEM, SAED, VSM, BET, XPS, and ICP-AES, the structure, surface morphology, elemental composition, and characteristics of the catalyst are revealed.

View Article and Find Full Text PDF

Controllable Active Intermediate in CO Hydrogenation Enabling Highly Selective ,-Dimethylformamide Synthesis via -Formylation.

J Am Chem Soc

December 2024

Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.

,-Dimethylformamide (DMF) is a widely used solvent, and its green and low-carbon synthesis methods are in high demand. Herein, we report a new approach for DMF synthesis using a continuous flow reaction system with a fixed-bed reactor and a ZnO-TiO solid solution catalyst. This catalyst effectively utilizes CO, H, and dimethylamine (DMA) as feedstocks, demonstrating performance with 99% DMF selectivity and single-pass DMA conversion approaching thermodynamic equilibrium.

View Article and Find Full Text PDF

The gut microbiome, which comprises symbiotic bacteria colonizing the human digestive tract, undergoes dynamic changes during the lifespan, as evidenced by the fact that the number of species and the diversity of their composition decrease significantly with age. The aim of this review is to illuminate bilateral neuroimmunological pathways that determine the role of gut microbiome dysbiosis, not only as a cause but also as a byproduct of many neurodegenerative diseases of the CNS, such as Alzheimer's disease (AD) and Parkinson's disease (PD), but also in the frame of several behavioral and psychiatric pathological conditions such as depressive and anxiety disorders, schizophrenia, and autism spectrum disorder (ASD). Dysbiosis, in particular, reveals a model of "deceptive" mimicry of host molecules that might cause abnormal folding ("misfolding") and pathological aggregation of Aβ-peptide, leading to its dispersion through the gut-brain axis, precipitating microglia cell activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!