A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Conservation and transmission of seed bacterial endophytes across generations following crossbreeding and repeated inbreeding of rice at different geographic locations. | LitMetric

AI Article Synopsis

  • There are diverse bacterial communities in rice seeds that are passed down from parent plants to their offspring, influencing the endophyte composition.
  • A study found that the richness, evenness, and diversity of these bacterial communities can change over generations due to crossbreeding, inbreeding, and environmental factors.
  • Key bacterial groups like Herbaspirillum, Microbacterium, and others may form a "core microbiota," suggesting they consistently play a significant role in shaping the endophytic communities in rice seeds across different locations and generations.

Article Abstract

There are comparatively diverse bacterial communities inside seeds, which are vertically transmitted and conserved, becoming sources of endophytes in the next generation of host plants. We studied how rice seed endophyte composition changed over time following crossbreeding, repeated inbreeding, subsequent human selection and planting of different rice seeds in different ecogeographical locations. Using terminal-restriction fragment length polymorphism analysis to study bacterial communities, we observed that diversity between the original parents and their offspring may show significant differences in richness, evenness and diversity indices. Heat maps reveal substantial contributions of both or either parent in the shaping of the bacterial seed endophytes of the offspring. Most of the terminal restriction fragments (T-RFs) of the subsequent progeny could be traced to any or both of its parents while unique T-RFs of the offspring suggest external sources of colonization particularly when the seeds were cultivated in different locations. Many similar groups of endophytic bacteria persist in the seeds even after recultivation in different locations, indicating resilience to environmental changes and conservation of bacteria across generations. This study suggests that parent plants contributed to the shaping of seed bacterial endophytes of their offspring, although it is also possible that these soil grown rice plants recruit similar populations of endophytes from the soil generation after generation. This study also highlights some bacterial groups belonging to Herbaspirillum, Microbacterium, Curtobacterium, Stenotrophomonas, Xanthomonas and Enterobacter that may be part of a transmitted and conserved "core microbiota" that are ubiquitous and dominant members of the endophytic communities of the rice seeds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6436425PMC
http://dx.doi.org/10.1002/mbo3.662DOI Listing

Publication Analysis

Top Keywords

seed bacterial
8
bacterial endophytes
8
crossbreeding repeated
8
repeated inbreeding
8
bacterial communities
8
transmitted conserved
8
rice seeds
8
endophytes offspring
8
bacterial
6
endophytes
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!