Photocatalysis, the use of light to promote organic transformations, is a field of catalysis that has received limited attention despite existing for over 100 years. With the revolution of photoredox catalysis in 2008, the rebirth or awakening of the field of photoorganocatalysis has brought new ideas and reactions to organic synthesis. This review will focus on the sudden outburst of literature regarding the use of small organic molecules as photocatalysts after 2013. In particular, it will focus on acridinium salts, benzophenones, pyrylium salts, thioxanthone derivatives, phenylglyoxylic acid, BODIPYs, flavin derivatives, and classes of organic molecules as catalysts for the photocatalytic generation of C-C and C-X bonds.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8ob00725jDOI Listing

Publication Analysis

Top Keywords

organic molecules
12
small organic
8
organic synthesis
8
will focus
8
organic
6
photoorganocatalysis small
4
molecules light
4
light service
4
service organic
4
synthesis awakening
4

Similar Publications

Insights into the adsorption mechanisms of VOCs molecules on non-oxidized and oxidized SnO (110) monolayer: DFT analysis.

J Mol Model

January 2025

Laboratory of Nanostructures and Advanced Materials, Mechanics and Thermofluids, Faculty of Sciences and Technologies, Hassan II University of Casablanca, B.P 146, 20650, Mohammedia, Morocco.

Context: Designing efficient sensitive materials for the detection of volatile organic compounds (VOCs) such as ethanol, acetone, and benzene is stringent owing to the significant environmental and health risks induced by these compounds, in addition to their role as biomarkers for chronic diseases and food quality. This study investigates the adsorption mechanisms of VOC molecules (ethanol, acetone, and benzene) on both non-oxidized and oxidized SnO (110) monolayers and identifies the most suitable surface for gas sensing applications. For this, we examined structural properties, adsorption energies, density of states, gas responses, and recovery times.

View Article and Find Full Text PDF

Exploring the conformational space of molecules remains a challenge of fundamental importance to quantum chemistry: identification of relevant conformers at ambient conditions enables predictive simulations of almost arbitrary properties. Here, we propose a novel approach, called TTConf, to enable conformational sampling of large organic molecules where the combinatorial explosion of possible conformers prevents the use of a brute-force systematic conformer search. We employ tensor trains as a highly efficient dimensionality reduction algorithm, effectively reducing the scaling from exponential to polynomial.

View Article and Find Full Text PDF

The ground-state charge generation (GSCG) in photoactive layers determines whether the photogenerated carriers occupy the deep trap energy levels, which, in turn, affects the device performance of organic solar cells (OSCs). In this work, charge-quadrupole electrostatic interactions are modulated to achieve GSCG through a molecular strategy of introducing different numbers of F atom substitutions on the BTA3 side chain. The results show that 8F substitution (BTA3-8F) and 16F substitution (BTA3-16F) lead to different patterns of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level changes.

View Article and Find Full Text PDF

Photocatalytic detoxification of a sulfur mustard simulant using donor-enhanced porphyrin-based covalent-organic frameworks.

Nanoscale

January 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.

Photocatalytic detoxification of sulfur mustards (, bis (2-chloroethyl) sulfide, SM) is an effective approach for protecting the ecological environment and human health. In order to fabricate COFs with high performance for the selective transformation of the SM simulant 2-chloroethyl ethyl sulfide (CEES) to nontoxic 2-chloroethyl ethyl sulfoxide (CEESO), three porphyrin-based COFs with different donor groups (R = H, OH, and OMe) were synthesized. Among these COFs, COF-OMe, which possesses the strongest electron-donating ability, demonstrated a faster and higher detoxification rate of CEES at various concentrations, achieving selective oxidation of CEES to non-toxic CEESO with 99.

View Article and Find Full Text PDF

Dimerizing DNA-AgNCs a C-Ag-C structure for fluorescence sensing with dual-output signals.

Chem Commun (Camb)

January 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China.

The unique insertion capability of Ag into cytosine-cytosine (C-Ag-C) mismatch-base pairs enables precise fabrication of DNA-trapped silver nanoclusters (DNA-AgNCs) through varying the DNA sequences, thereby offering precise assembly of DNA-AgNCs and demonstrating great fluorescence applications. However, most of the DNA-AgNC-based fluorescence sensors have a single output signal. Herein, we developed a dimerized DNA-AgNC system through C-Ag-C connection at the 3'-end of a designed DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!