We develop a theory to study the generation of the streaming potential and the resulting electrochemomechanical energy conversion (ECMEC) in the presence of pressure-driven transport in nanochannels grafted with end-charged polyelectrolyte (PE) brushes. Our theory gives a thermodynamically self-consistent coupled description of the PE-brush and the electrostatics of the electric double layer (EDL) induced by the PE charges. The end-charged brushes localize the maximum EDL charge density away from the wall, thereby enabling a larger magnitude of pressure-driven transport to stream the ions downstream. This effect is retarded by the drag force imparted by the brushes as well as by the enhanced electroosmotic transport in a direction opposite to the pressure-driven transport. An interplay of these three issues leads to highly non-trivial electrohydrodynamic transport that eventually allows us to converge on appropriate properties of the brushes (e.g., grafting density and the number of monomers) that lead to the generation of a significantly larger streaming potential and a much improved efficiency of the ECMEC as compared to the brush-free nanochannels particularly at medium and high salt concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8sm00768cDOI Listing

Publication Analysis

Top Keywords

pressure-driven transport
12
electrochemomechanical energy
8
energy conversion
8
nanochannels grafted
8
grafted end-charged
8
end-charged polyelectrolyte
8
polyelectrolyte brushes
8
medium high
8
high salt
8
streaming potential
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!