Conventional radiological and endoscopic techniques utilizing long tubes were ineffective in visualizing the small bowel mucosa until the development of wireless capsule endoscopy (WCE). WCE is a revolutionary endoscopic technology that can diagnose the complete gastrointestinal tract. However, the existing capsule technologies are passive, and thus they cannot be navigated to or held in a specific location. The design of an active capsule will present the opportunity to move and stop a device at any targeted locations leading to numerous medical applications such as drug delivery or collecting tissue samples for examinations in the laboratory. This paper implements a new locomotion methodology for WCE systems using an electromagnetic platform. The platform produces a dynamic electromagnetic field to control the motion of the capsule. The strength and the direction of the electromagnetic field that is generated by the platform are continuously adjusted in order to maintain the equilibrium state during the capsule movement. We present the detailed design of the proposed platform with an experimental setup with polyvinyl chloride tubes and to demonstrate the performance of the capsule motion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991866 | PMC |
http://dx.doi.org/10.1109/JTEHM.2018.2837895 | DOI Listing |
Sci Rep
January 2025
Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China.
Strong light-matter coupling occurs when the rate of energy exchange between the electromagnetic mode and the molecular ensemble exceeds the competitive dissipation process. Coupled photon molecules with near-field light-matter interactions may produce new hybridized states when they reach the strong coupling region. Tunable Terahertz (THz) meta materials can be used to design sensors, optical modulators, etc.
View Article and Find Full Text PDFHealth Phys
January 2025
Sublight Engineering PLLC, Arlington, VA.
This study investigated the implementation and impact of fifth-generation (5G) wireless millimeter wave (mmW) technology. 5G offers significant advancements over previous generations and supports additional frequency bands, including mmW, to enhance mobile broadband with ultra-reliable, low-latency communications, supporting a high volume of diverse communications. This technology is expected to enable billions of new connections in the Internet of Things (IoT), fostering innovations in various sectors including healthcare, manufacturing, and education.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.
The porous polymer is a common and fascinating category within the vast family of porous materials. It offers valuable features such as sufficient raw materials, easy processability, controllable pore structures, and adjustable surface functionality by combining the inherent properties of both porous structures and polymers. These characteristics make it an effective choice for designing functional and advanced materials.
View Article and Find Full Text PDFMultichannel transceiver coil arrays are needed to enable parallel imaging and B1 manipulation in ultrahigh field MR imaging and spectroscopy. However, the design of such transceiver coils and coil arrays often faces technical challenges in achieving the required high operating frequency at the ultrahigh fields and sufficient electromagnetic (EM) decoupling between resonant elements. In this work, we propose a high impedance microstrip transmission line resonator (HIMTL) technique that has unique high frequency capability and adequate EM decoupling without the use of dedicated decoupling circuits.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 211189, China.
Electromagnetic (EM) metamaterials represent a cutting-edge field that achieves anomalously macroscopic properties through artificial design and arrangement of microstructure arrays to freely manipulate EM fields and waves in desired ways. The unit cell of a microstructure array is also called a meta-atom, which can construct effective medium parameters that do not exist in traditional materials or are difficult to realize with traditional technologies. By deep integration with digital information, the meta-atom is evolved to a digital meta-atom, leading to the emergence of information metamaterials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!