A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring Landscape of Drug-Target-Pathway-Side Effect Associations. | LitMetric

Exploring Landscape of Drug-Target-Pathway-Side Effect Associations.

AMIA Jt Summits Transl Sci Proc

Department of Computer Science, Hunter College, the CityUniversity of New York, New York, NY, United States.

Published: May 2018

Side effects are the second and the fourth leading causes of drug attrition and death in the US. Thus, accurate prediction of side effects and understanding their mechanism of action will significantly impact drug discovery and clinical practice. Here, we show REMAP, a neighborhood-regularized weighted and imputed one-class collaborative filtering algorithm, is effective in predicting drug-side effect associations from a drug-side effect association network, and significantly outperforms the state-of-the-art multi-target learning algorithm for predicting rare side effects. We also apply FASCINATE, an extension of REMAP for multi-layered networks, to infer associations among side effects and drug targets from drug-target-side effect networks. Then, using random permutation analysis and gene overrepresentation tests, we infer statistically significant side effect-pathway associations. The predicted drug-side effect associations and side effect-causing pathways are consistent with clinical evidences. We expect more novel drug-side effect associations and side effect-causing pathways to be identified when applying REMAP and FASCINATE to large-scale chemical-gene-side effect networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961812PMC

Publication Analysis

Top Keywords

associations side
16
side effects
16
drug-side associations
12
side effect-causing
8
effect-causing pathways
8
side
7
associations
6
exploring landscape
4
landscape drug-target-pathway-side
4
drug-target-pathway-side associations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!