Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Side effects are the second and the fourth leading causes of drug attrition and death in the US. Thus, accurate prediction of side effects and understanding their mechanism of action will significantly impact drug discovery and clinical practice. Here, we show REMAP, a neighborhood-regularized weighted and imputed one-class collaborative filtering algorithm, is effective in predicting drug-side effect associations from a drug-side effect association network, and significantly outperforms the state-of-the-art multi-target learning algorithm for predicting rare side effects. We also apply FASCINATE, an extension of REMAP for multi-layered networks, to infer associations among side effects and drug targets from drug-target-side effect networks. Then, using random permutation analysis and gene overrepresentation tests, we infer statistically significant side effect-pathway associations. The predicted drug-side effect associations and side effect-causing pathways are consistent with clinical evidences. We expect more novel drug-side effect associations and side effect-causing pathways to be identified when applying REMAP and FASCINATE to large-scale chemical-gene-side effect networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961812 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!