Bacterial lactate racemase is a nickel-dependent enzyme that contains a cofactor, nickel pyridinium-3,5-bisthiocarboxylic acid mononucleotide, hereafter named nickel-pincer nucleotide (NPN). The LarC enzyme from the bacterium participates in NPN biosynthesis by inserting nickel ion into pyridinium-3,5-bisthiocarboxylic acid mononucleotide. This reaction, known in organometallic chemistry as a cyclometalation, is characterized by the formation of new metal-carbon and metal-sulfur σ bonds. LarC is therefore the first cyclometallase identified in nature, but the molecular mechanism of LarC-catalyzed cyclometalation is unknown. Here, we show that LarC activity requires Mn-dependent CTP hydrolysis. The crystal structure of the C-terminal domain of LarC at 1.85 Å resolution revealed a hexameric ferredoxin-like fold and an unprecedented CTP-binding pocket. The loss-of-function of LarC variants with alanine variants of acidic residues leads us to propose a carboxylate-assisted mechanism for nickel insertion. This work also demonstrates the synthesis and purification of the NPN cofactor, opening new opportunities for the study of this intriguing cofactor and of NPN-utilizing enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093250 | PMC |
http://dx.doi.org/10.1074/jbc.RA118.003741 | DOI Listing |
mBio
December 2024
Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA.
J Biol Chem
December 2024
Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-La-Neuve, Belgium. Electronic address:
2-hydroxy acids are organic carboxylic acids ubiquitous in the living world and are important building blocks in organic synthesis. Recently, the lactate racemase (LarA) superfamily, a diverse superfamily of 2-hydroxy acid racemases and epimerases using the nickel-pincer nucleotide (NPN) cofactor, has been uncovered. In this study, we performed a taxonomic analysis of the LarA superfamily, showing the distribution of lactate racemase homologs (LarAHs) sequences across the three domains of life.
View Article and Find Full Text PDFThe LarA family consists of diverse racemases/epimerases that interconvert the diastereomers of a variety of α-hydroxyacids by using a nickel-pincer nucleotide (NPN) cofactor. The hidden redox reaction catalyzed by the NPN cofactor makes LarA enzymes attractive engineering targets for applications. However, how a LarA enzyme binds its natural substrate and recognizes different α-hydroxyacids has not been elucidated.
View Article and Find Full Text PDFBioorg Chem
December 2024
Department of Chemistry, Laboratory of Bio-Organic Chemistry, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium. Electronic address:
The nickel-pincer nucleotide cofactor (NPN) is a widespread organometallic cofactor required for lactate racemase (LarA) and for α-hydroxy acid racemases and epimerases of the LarA superfamily. Its biosynthesis, which starts with nicotinic acid adenine dinucleotide (NaAD), requires three enzymes: LarB, LarC, and LarE, and can be performed in vitro with purified enzymes. Nevertheless, as LarE and LarC are single turnover enzymes, the in vitro NPN biosynthesis requires huge amounts of enzymes (particularly 2 equivalents of LarE), which hampers the study of NPN and of NPN-dependent enzymes.
View Article and Find Full Text PDFACS Catal
January 2023
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States.
The nickel-pincer nucleotide (NPN) cofactor discovered in lactate racemase from (LarA) is essential for the activities of racemases/epimerases in the highly diverse LarA superfamily. Prior mechanistic studies have established a proton-coupled hydride-transfer mechanism for LarA, but direct evidence showing that hydride attacks the C4 atom in the pyridinium ring of NPN has been lacking. Here, we show that sodium borohydride (NaBH) irreversibly inactivates LarA accompanied by a rapid color change of the enzyme.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!