Microplastics have become a concern in recent years because of their negative impact on marine and freshwater environments. Twenty-one sandy beach sites were sampled to investigate the occurrence and distribution of microplastics on the sandy beaches of the Baja California Peninsula, Mexico, as well as their spectroscopic characterization and morphology. Microplastics were separated using the density method and identified using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR). The mean abundance of microplastics in the samples was 135 ± 92 particles kg−1, and fiber was the most abundant microplastic found in the samples, comprising 91% of the total microplastics identified. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis of the microplastics showed that the main polymers found in microplastics were polyacrylic, polyacrylamide, polyethylene terephthalate, polyesters, and nylon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2018.03.055 | DOI Listing |
Environ Res
January 2025
ISPRA, Italian National Institute for Environmental Protection and Research, Laboratory of Nekton Ecology, Via del Fosso di Fiorano 64, 00143, Rome, RM, Italy.
Implementing biomonitoring programs for assessing the impact of microplastic ingestion on marine organisms is a priority to verify the effectiveness of measures adopted by legislative frameworks to deal with plastic pollution. At the European level, the Marine Strategy Framework Directive mandates Member States to establish a unified monitoring approach. However, due to the vast range and differences in marine regions, the selection of bioindicators must be tailored locally.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Geographical Science, Harbin Normal University, Harbin 150025, China.
Microplastics (MPs) pose an emerging threat to vegetable growing soils in Harbin, which have a relatively high abundance (11,065 n/kg) with 17.26 of potential ecological risk of single polymer hazard (EI) and 33.92 of potential ecological risk index (PERI).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Chemistry and Environment, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.
Microplastic pollution, a major global environmental issue, is gaining heightened attention worldwide. Marginal seas are particularly susceptible to microplastic contamination, yet data on microplastics in marine sediments remain scarce, especially in the Beibu Gulf. This study presents a large-scale investigation of microplastics in the surface sediments of the Beibu Gulf to deciphering their distribution, sources and risk to marginal seas ecosystems.
View Article and Find Full Text PDFAquat Toxicol
January 2025
Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Québec H4B 1R6, Canada.
Microplastics, particles between 0.001 and 5 mm in diameter, are ubiquitous in the environment and their consumption by aquatic organisms is known to lead to a variety of adverse effects. However, studies on the effects of microplastics on prey fish have not shown consistent trends, with results varying across species and plastic type used.
View Article and Find Full Text PDFChemosphere
January 2025
DASCO Inc, Centennial, Colorado, USA.
This study thoroughly investigated the adsorption of Congo Red (CR) dye onto various microplastics (MPs), including high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP) and polyethylene terephthalate (PET). Initial adsorption capacities (q) revealed that HDPE had the highest value (21.90 mg/g), followed by PVC (4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!