A zero percent plastic ingestion rate by silver hake (Merluccius bilinearis) from the south coast of Newfoundland, Canada.

Mar Pollut Bull

Department of Geography, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Civic Laboratory for Environmental Action Research (CLEAR), Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada. Electronic address:

Published: June 2018

Silver hake, (Merluccius bilinearis), contributes significant biomass to Northwest Atlantic ecosystems. The incidence of plastic ingestion for 134 individuals collected from Newfoundland, Canada was examined through visual examination of gastrointestinal contents and Raman spectrometry. We found a frequency of occurrence of ingestion of 0%. Through a comprehensive literature review of globally published fish ingestion studies, we found our value to be consistent with 41% (n = 100) of all reported fish ingestion rates. We could not statistically compare silver hake results to other species due to low sample sizes in other studies (less than n = 20) and a lack of standardized sampling methods. We recommend that further studies should 1) continue to report 0% plastic ingestion rates and 2) should describe location and species-specific traits that may contribute to 0% ingestion rates, particularly in locations where fish consumption has cultural and economic significance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2018.04.007DOI Listing

Publication Analysis

Top Keywords

plastic ingestion
12
silver hake
12
ingestion rates
12
hake merluccius
8
merluccius bilinearis
8
newfoundland canada
8
fish ingestion
8
ingestion
7
percent plastic
4
ingestion rate
4

Similar Publications

The surge in plastic production has spurred a global crisis as plastic pollution intensifies, with microplastics and nanoplastics emerging as notable environmental threats. Due to their miniature size, these particles are ubiquitous across ecosystems and pose severe hazards as they are ingested and bioaccumulate within organisms. Although global plastic production has reached an alarming 400.

View Article and Find Full Text PDF

An increase in plastic waste and its release into the environment has led to health concerns over microplastics (MPs) in the environment. The intestinal mucosal layer is a key defense mechanism against ingested MPs, preventing the migration of particles to other parts of the body. MP migration through intestinal mucus is challenging to study due to difficulties in obtaining intact mucus layers for testing and numerous formulations, shapes, and sizes of microplastics.

View Article and Find Full Text PDF

The physical abrasion of plastics from simple everyday entered the food chain, with associated risks recently emphasized. Although many studies have reported the adverse effects of microplastics (MPs) on human, the reproductive implications of continuous exposure to physically abraded polyethylene terephthalate (PET)-MPs remain unexplored. Ingestion of physically abraded PET-MPs (size range: 50-100 µm) in mice from 5 to 34 weeks of age at an annual intake relevant dose of MPs (5 mg week) significantly impaired male reproductive function.

View Article and Find Full Text PDF

Omics insights in responses of bivalves exposed to plastic pollution.

Aquat Toxicol

December 2024

Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Pearl Research Institute, Guangdong Ocean University, Zhanjiang, China.

Plastic pollution, particularly microplastics and nanoplastics, poses a significant threat to marine ecosystems. Bivalves, vital filter feeders that accumulate plastic particles, underscore the necessity for advanced omics technologies to grasp their molecular reactions to plastic exposure. This review delves into the impact of microplastics and nanoplastics on bivalves utilizing advanced omics technologies.

View Article and Find Full Text PDF

Introduction: Intermittent fasting (IF) has emerged as a potential lifestyle intervention for mitigating cognitive decline and enhancing brain health in individuals with mild to major neurocognitive disorders. Unlike preventive strategies, this review evaluates IF as a therapeutic approach, focusing on its effects on neuroplasticity, inflammation, and cognitive function.

Methods: A narrative review was conducted using a comprehensive PubMed search with the terms "intermittent fasting AND neurocognition" and "intermittent fasting AND neuroplasticity".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!