A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surgical Planning and Follow-up of Anterior Vertebral Body Growth Modulation in Pediatric Idiopathic Scoliosis Using a Patient-Specific Finite Element Model Integrating Growth Modulation. | LitMetric

Study Design: Numerical planning and simulation of immediate and post-two-year growth modulation effects of Anterior Vertebral Body Growth Modulation (AVBGM).

Objectives: To develop a planning tool based on a patient-specific finite element model (FEM) of pediatric scoliosis integrating growth to computationally assess the 3D biomechanical effects of AVBGM.

Summary Of Background Data: AVBGM is a recently introduced fusionless compression-based approach for pediatric scoliotic patients presenting progressive curves. Surgical planning is mostly empirical, with reported issues including overcorrection (inversion of the side) of the curve and a lack of control on 3D correction.

Methods: Twenty pediatric scoliotic patients instrumented with AVBGM were assessed. An osseoligamentous FEM of the spine, rib cage, and pelvis was generated before surgery using the patient's 3D reconstruction obtained from calibrated biplanar radiographs. For each case, different scenarios of AVBGM and two years of vertebral growth and growth modulation due to gravitational loads and forces from AVBGM were simulated. Simulated correction indices in the coronal, sagittal, and transverse planes for the retained scenario were computed and a posteriori compared to actual patient's postoperative and two years' follow-up data.

Results: The simulated immediate postoperative Cobb angles were on average within 3° of that of the actual correction, while it was ±5° for kyphosis/lordosis angles, and ±5° for apical axial rotation. For the simulated 2-year postoperative follow-up, correction results were predicted at ±3° for Cobb angles and ±5° for kyphosis/lordosis angles, ±2% for T1-L5 height, and ±4° for apical axial rotation.

Conclusion: A numeric model simulating immediate and post-two-year effects of AVBGM enabled to assess different implant configurations to support surgical planning.

Level Of Evidence: Level III.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jspd.2017.11.006DOI Listing

Publication Analysis

Top Keywords

growth modulation
20
surgical planning
8
anterior vertebral
8
vertebral body
8
body growth
8
patient-specific finite
8
finite element
8
element model
8
integrating growth
8
pediatric scoliotic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!