Numerous genetic alterations of HSA 11q13 are found frequently in several cancer types, including breast cancer (BC). The 11q13 locus harbors FADS2 encoding Δ6 desaturation which is not functional in several cancer cell lines, including hormone positive MCF7 BC cells. In vitro, the non-functional FADS2 activity unmasks 18:2n-6 elongation to 20:2n-6 and Δ5 desaturation by FADS1 to yield 5Z,11Z,14Z-20:3 (sciadonic acid) rather than 5Z,8Z,11Z,14Z-20:4 (arachidonic acid). In this pilot study we aimed to determine whether 5,11,14-20:3 appears in vivo in hormone positive human BC tissue. Fatty acids were profiled in surgically removed human breast tumor and adjacent normal tissue (n = 9). Sciadonic acid was detected in three of nine breast tumor samples and was below detect limits in normal breast tissue. The internal Δ8 double bond of arachidonic acid is required for normal eicosanoid synthesis but is missing in sciadonic acid. This pilot study demonstrates for the first time in vivo sciadonic acid in hormone positive BC tissue, warranting a larger survey study to further evaluate its appearance and the functional implications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5999340 | PMC |
http://dx.doi.org/10.1016/j.plefa.2018.05.002 | DOI Listing |
Food Res Int
December 2024
College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:
Torreya grandis (TG) nuts are highly valued for their rich content of bioactive compounds including lipids, proteins, carbohydrates, phenolic compounds, vitamins, and minerals, credited with numerous health benefits. In addition to their use in various culinary applications, such as baked goods and snacks, TG nuts are valuable source of high-quality oil rich in ω-3 and ω-6 unsaturated fatty acids, which has been shown to have anti-obesity, neuroprotective, and anti-diabetes effects. Besides, the byproducts from TG nuts processing, like the fruit aril and oil cake, are valuable sources of essential oils and proteins, respectively, with notable antioxidant, antimicrobial, and antifungal properties.
View Article and Find Full Text PDFFood Chem
January 2025
School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China. Electronic address:
Non-traditional seafood, such as spoon worms (Urechis unicinctus) and peanut worms (Sipunculus nudus), serves as both delicacies and potential solutions to the global food insecurity crisis. Despite being consumed primarily in parts of China, Korea, and Japan, the nutritional values especially the complex fatty acid compositions of these marine worms are difficult to characterize. To overcome this obstacle, we employed covalent adduct chemical ionization (CACI) tandem mass spectrometry for the de novo identification of their unusual polyunsaturated fatty acids (PUFA).
View Article and Find Full Text PDFJ Nutr Biochem
September 2024
School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China. Electronic address:
Torreya grandis (T. grandis) oil has been reported to alleviate symptoms of slow transit constipation (STC). However, the impact of sciadonic acid (SA), a distinctive fatty acid found in T.
View Article and Find Full Text PDFFood Funct
April 2024
Institute of Sericulture and Tea Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
High-fat diet (HFD) has been associated with certain negative bone-related outcomes, such as bone metabolism disruption and bone loss. Sciadonic acid (SC), one of the main nutritional and functional components of seed oil, is a unique Δ5-unsaturated-polymethylene-interrupted fatty acid (Δ5-UPIFA) that has been claimed to counteract such disorders owing to some of its physiological effects. However, the role of SC in ameliorating bone metabolism disorders due to HFD remains unclear.
View Article and Find Full Text PDFJ Sci Food Agric
May 2024
Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
Background: Cyclophosphamide (Cy) is a frequently used chemotherapeutic drug, but long-term Cy treatment can cause immunosuppression and intestinal mucosal damage. The intestinal mucosal barrier and gut flora play important roles in regulating host metabolism, maintaining physiological functions and protecting immune homeostasis. Dysbiosis of the intestinal flora affects the development of the intestinal microenvironment, as well as the development of various external systemic diseases and metabolic syndrome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!