A novel application of deep learning for single-lead ECG classification.

Comput Biol Med

Dept. of Electrical and Computer Engineering, University of Delaware, Newark, DE, 19716, USA. Electronic address:

Published: August 2018

Detecting and classifying cardiac arrhythmias is critical to the diagnosis of patients with cardiac abnormalities. In this paper, a novel approach based on deep learning methodology is proposed for the classification of single-lead electrocardiogram (ECG) signals. We demonstrate the application of the Restricted Boltzmann Machine (RBM) and deep belief networks (DBN) for ECG classification following detection of ventricular and supraventricular heartbeats using single-lead ECG. The effectiveness of this proposed algorithm is illustrated using real ECG signals from the widely-used MIT-BIH database. Simulation results demonstrate that with a suitable choice of parameters, RBM and DBN can achieve high average recognition accuracies of ventricular ectopic beats (93.63%) and of supraventricular ectopic beats (95.57%) at a low sampling rate of 114 Hz. Experimental results indicate that classifiers built into this deep learning-based framework achieved state-of-the art performance models at lower sampling rates and simple features when compared to traditional methods. Further, employing features extracted at a sampling rate of 114 Hz when combined with deep learning provided enough discriminatory power for the classification task. This performance is comparable to that of traditional methods and uses a much lower sampling rate and simpler features. Thus, our proposed deep neural network algorithm demonstrates that deep learning-based methods offer accurate ECG classification and could potentially be extended to other physiological signal classifications, such as those in arterial blood pressure (ABP), nerve conduction (EMG), and heart rate variability (HRV) studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2018.05.013DOI Listing

Publication Analysis

Top Keywords

deep learning
12
ecg classification
12
sampling rate
12
single-lead ecg
8
ecg signals
8
ectopic beats
8
rate 114 hz
8
deep learning-based
8
lower sampling
8
traditional methods
8

Similar Publications

hERGAT: predicting hERG blockers using graph attention mechanism through atom- and molecule-level interaction analyses.

J Cheminform

January 2025

Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, Republic of Korea.

The human ether-a-go-go-related gene (hERG) channel plays a critical role in the electrical activity of the heart, and its blockers can cause serious cardiotoxic effects. Thus, screening for hERG channel blockers is a crucial step in the drug development process. Many in silico models have been developed to predict hERG blockers, which can efficiently save time and resources.

View Article and Find Full Text PDF

Background: Assessing the difficulty of impacted lower third molar (ILTM) surgical extraction is crucial for predicting postoperative complications and estimating procedure duration. The aim of this study was to evaluate the effectiveness of a convolutional neural network (CNN) in determining the angulation, position, classification and difficulty index (DI) of ILTM. Additionally, we compared these parameters and the time required for interpretation among deep learning (DL) models, sixth-year dental students (DSs), and general dental practitioners (GPs) with and without CNN assistance.

View Article and Find Full Text PDF

Virtual biopsy for non-invasive identification of follicular lymphoma histologic transformation using radiomics-based imaging biomarker from PET/CT.

BMC Med

January 2025

Department of Nuclear Medicine, West China Hospital, Sichuan University, Guoxue Alley, Address: No.37, Chengdu City, Sichuan, 610041, China.

Background: This study aimed to construct a radiomics-based imaging biomarker for the non-invasive identification of transformed follicular lymphoma (t-FL) using PET/CT images.

Methods: A total of 784 follicular lymphoma (FL), diffuse large B-cell lymphoma, and t-FL patients from 5 independent medical centers were included. The unsupervised EMFusion method was applied to fuse PET and CT images.

View Article and Find Full Text PDF

Background: Early detection and diagnosis of cancer are vital to improving outcomes for patients. Artificial intelligence (AI) models have shown promise in the early detection and diagnosis of cancer, but there is limited evidence on methods that fully exploit the longitudinal data stored within electronic health records (EHRs). This review aims to summarise methods currently utilised for prediction of cancer from longitudinal data and provides recommendations on how such models should be developed.

View Article and Find Full Text PDF

Whole slide image based deep learning refines prognosis and therapeutic response evaluation in lung adenocarcinoma.

NPJ Digit Med

January 2025

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.

Existing prognostic models are useful for estimating the prognosis of lung adenocarcinoma patients, but there remains room for improvement. In the current study, we developed a deep learning model based on histopathological images to predict the recurrence risk of lung adenocarcinoma patients. The efficiency of the model was then evaluated in independent multicenter cohorts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!