Ethanol effect on gold nanoparticle aggregation state and its implication in the interaction mechanism with DNA.

J Colloid Interface Sci

Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González, s/n, 41012 Sevilla, Spain.

Published: November 2018

The equilibria and kinetics aspects of the binding of small gold nanoparticles, AuNPs, stabilized with tiopronin to DNA in B and C conformation (B-DNA and C-DNA), has been investigated in ethanol/water mixtures using different techniques. Two modes of binding are displayed: groove binding and partial intercalation, depending on the ethanol content, [EtOH], and the molar ratio, R = C/C. Two reaction mechanisms are proposed for AuNPs/DNA interaction in each polymer conformation, and the reaction parameters are evaluated. For lower ethanol levels, ([EtOH] up to 30%), when DNA is in the B form, the simplest mechanism according to the kinetic and thermodynamic results proved to be a three-step series mechanism reaction scheme which evolves in the formation of the groove complex. In this context, solvent hydration as well as the solvent effective viscosity are the main factors that influence kinetics. In contrast, for high ethanol levels, when DNA is in a C-like conformation, the mechanism is more complex involving three parallel reactions, in which AuNPs self-aggregation plays a key role in the switch from partial intercalation to groove binding. On the whole, it is evident that AuNPs aggregation and the DNA conformation are two key factors that must be taken into account in order to control the mechanism of AuNPs/DNA interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2018.05.108DOI Listing

Publication Analysis

Top Keywords

dna conformation
8
groove binding
8
partial intercalation
8
aunps/dna interaction
8
ethanol levels
8
mechanism
5
dna
5
ethanol
4
ethanol gold
4
gold nanoparticle
4

Similar Publications

Nucleosome is the basic structural unit of the genome. During processes like DNA replication and gene transcription, the conformation of nucleosomes undergoes dynamic changes, including DNA unwrapping and rewrapping, as well as histone disassembly and assembly. However, the wrapping characteristics of nucleosomes across the entire genome, including region-specificity and their correlation with higher-order chromatin organization, remains to be studied.

View Article and Find Full Text PDF

The charge transfer (CT) reactions in nucleic acids are crucial for genome damage and repair and nanoelectronics using DNA as a molecular conductor. Previous experimental and theoretical works underlined the significance of nucleic acid structural dynamics on CT kinetics, requiring models that incorporate the dynamics of the nucleic acid, solvents, and counterions. Here, we investigated hole transfer kinetics in poly adenine single and double strands at various temperatures and the rate enhancement due to adenine-to-7-deazaadenine mutation by means of a QM/MM approach.

View Article and Find Full Text PDF

Insights into the behaviour of phosphorylated DNA breaks from molecular dynamic simulations.

Comput Biol Chem

December 2024

Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5400, Oulu 90014, Finland; Biocenter Oulu, University of Oulu, PO Box 5400, Oulu 90014, Finland. Electronic address:

Single-stranded breaks (SSBs) are the most frequent DNA lesions threatening genomic integrity-understanding how DNA sensor proteins recognize certain SSB types is crucial for studies of the DNA repair pathways. During repair of damaged DNA the final SSB that is to be ligated contains a 5'-phosphorylated end. The present work employed molecular simulation (MD) of DNA with a phosphorylated break in solution to address multiple questions regarding the dynamics of the break site.

View Article and Find Full Text PDF

The TRAMP complex contains two enzymatic activities essential for RNA processing upstream of the nuclear exosome. Within TRAMP, RNA is 3' polyadenylated by a subcomplex of Trf4/5 and Air1/2 and unwound 3' to 5' by Mtr4, a DExH helicase. The molecular mechanisms of TRAMP assembly and RNA shuffling between the two TRAMP catalytic sites are poorly understood.

View Article and Find Full Text PDF

Precursors of microRNAs (pre-miRNAs) are less used in silico to mine miRNAs. This study developed PmiR-Select based on covariance models (CMs) to identify new pre-miRNAs, detecting conserved secondary structural features across RNA sequences and eliminating the redundancy. The pipeline preceded PmiR-Select filtered 20% plant pre-miRNAs (from 38589 to 8677) from miRBase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!