A hallmark of industrialization is the construction of dams for water management and roads for transportation, leading to fragmentation of aquatic ecosystems. Many nations are striving to address both maintenance backlogs and mitigation of environmental impacts as their infrastructure ages. Here, we test whether accounting for road repair needs could offer opportunities to boost conservation efficiency by piggybacking connectivity restoration projects on infrastructure maintenance. Using optimization models to align fish passage restoration sites with likely road repair priorities, we find potential increases in conservation return-on-investment ranging from 17% to 25%. Importantly, these gains occur without compromising infrastructure or conservation priorities; simply communicating openly about objectives and candidate sites enables greater accomplishment at current funding levels. Society embraces both reliable roads and thriving fisheries, so overcoming this coordination challenge should be feasible. Given deferred maintenance crises for many types of infrastructure, there could be widespread opportunities to enhance the cost effectiveness of conservation investments by coordinating with infrastructure renewal efforts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eap.1750 | DOI Listing |
Discov Oncol
January 2025
Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.1367 Wenyi West Road, Yuhang District, Hangzhou, 311100, People's Republic of China.
The work is aimed to investigate whether midazolam functions in thyroid cancer and reveal the potential mechanism of action. Cell viability was detected by CCK-8 method when treated by varying doses of midazolam to detect the cytotoxicity of midazolam on human thyroid follicular epithelial cell line and thyroid cancer cell lines. In thyroid cancer cells, EDU staining, wound healing and transwell assays were respectively used to detect cell proliferation, migration and invasion.
View Article and Find Full Text PDFInt J Colorectal Dis
January 2025
Internal Medicine, Jilin Cancer Hospital, Changchun, China.
Purpose: This phase II study is designed to evaluate the combination therapy involving suvemcitug and envafolimab with FOLFIRI in microsatellite-stable or mismatch repair-proficient (MSS/pMMR) colorectal cancer (CRC) in the second-line treatment setting.
Methods: This study is a non-randomized, open-label prospective study comprising multiple cohorts (NCT05148195). Here, we only report the data from the CRC cohort.
RSC Adv
January 2025
Regenerative Medicine and Tissue Repair Material Research Center, HuangpuInstitute of Materials 88 Yonglong Avenue of Xinlong Town Guangzhou 511363 P. R. China.
As a well-known aromatic herb rich in various bioactive molecules, the extract of is widely used in cosmetics. However, the extraction process for is far from perfect. Moreover, the water- and oil-soluble components are too complex to be compatible with each other.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, 291, Zhongzheng Rd, Zhonghe Dist, New Taipei City, 23561, Taiwan.
Background: Full-thickness cartilage defects have a significant impact on the function of joints in young adults, and the treatment of cartilage defects has been a challenge, as cartilage tissue is an avascular tissue. This study aimed to compare the clinical and radiological outcomes of Biphasic Cartilage Repair Implant (BiCRI) and microfracture treatments for knee cartilage defects.
Methods: This randomized controlled clinical trial enrolled patients with symptomatic knee chondral lesions smaller than 3 cm.
J Nanobiotechnology
January 2025
Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
Background: Spinal cord injury (SCI) treatment remains a formidable challenge, as current therapeutic approaches provide only marginal relief and fail to reverse the underlying tissue damage. This study aims to develop a novel composite material combining enzymatic nanoparticles and nerve growth factor (NGF) to modulate the immune microenvironment and enhance SCI repair.
Methods: CeMn nanoparticles (NP) and CeMn NP-polyethylene glycol (PEG) nanozymes were synthesized via sol-gel reaction and DSPE-mPEG modification.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!