Pertussis toxin was used to examine the role of the inhibitory guanine nucleotide regulatory protein, Ni, in muscarinic-receptor-mediated stimulation of phosphoinositide turnover and calcium mobilization. In cultured chick heart cells, pertussis-toxin treatment inhibited muscarinic-receptor-mediated attenuation of isoprenaline-stimulated cyclic AMP accumulation. This finding is consistent with the proposal that pertussis toxin blocks the capacity of Ni to couple muscarinic receptors to adenylate cyclase. In contrast, treatment of chick heart cells or 1321N1 human astrocytoma cells with pertussis toxin did not block muscarinic-receptor-mediated stimulation of phosphoinositide hydrolysis, as measured by [3H]inositol phosphate accumulation in the presence of Li+. Pertussis-toxin treatment also had little effect on basal and muscarinic-receptor-stimulated phosphatidylinositol synthesis, as measured by the incorporation of [3H]inositol into phosphatidylinositol. Activation of muscarinic receptors also enhances the rate of unidirectional 45Ca2+ efflux in 1321N1 cells; this response, like phosphoinositide hydrolysis, was not prevented by pertussis-toxin treatment. Our data suggest that muscarinic receptors are not coupled to phosphoinositide hydrolysis or calcium mobilization through Ni.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1144924 | PMC |
http://dx.doi.org/10.1042/bj2270933 | DOI Listing |
Int J Mol Sci
December 2024
Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.
Rice plants are important food crops that are sensitive to cold stress. Microtubules (MTs) are highly associated with plant response to cold stress. The exogenous application of abscisic acid (ABA) can transiently induce the cold stability of microtubules.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, 390-8621, Japan.
Lysophosphatidylethanolamine (LPE) is a bioactive lipid mediator involved in diverse cellular functions. In this study, we investigated the effects of three LPE species, 1-palmitoyl LPE (16:0 LPE), 1-stearoyl LPE (18:0 LPE), and 1-oleoyl LPE (18:1 LPE) on pre-osteoblast MC3T3-E1 cells. All LPE species stimulated cell proliferation and activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2.
View Article and Find Full Text PDFBrain
December 2024
Neuroimmunology Program, Fundació Clínic per la Recerca Biomèdica - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona 08036, Spain.
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a disorder mediated by autoantibodies against the GluN1 subunit of NMDAR. It occurs with severe neuropsychiatric symptoms that often improve with immunotherapy. Clinical studies and animal models based on patients' antibody transfer or NMDAR immunization suggest that the autoantibodies play a major pathogenic role.
View Article and Find Full Text PDFLancet Glob Health
January 2025
Centre for Neonatal and Paediatric Infection and Vaccine Institute, City St George's, University of London, London, UK; Makerere University-Johns Hopkins University Research Collaboration, Kampala, Uganda; UK Health Security Agency, Salisbury, UK.
J Biol Chem
December 2024
Institute of Biomedicine, University of Turku, Turku, Finland. Electronic address:
Enzyme promiscuity is the ability of an enzyme to catalyze an unexpected side reaction in addition to its main reaction. Here, we describe a biocatalytic process to produce nonhydrolyzable NAD+ analogs based on the ADP-ribosyltransferase activity of pertussis toxin PtxS1 subunit. First, in identical manner to normal catalysis, PtxS1 activates NAD+ to form the reactive oxocarbenium cation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!