Unraveling the sense of smell relies on understanding how odorant receptors recognize odorant molecules. Given the vastness of the odorant chemical space and the complexity of the odorant receptor space, computational methods are in line to propose rules connecting them. We hereby propose an in silico and an in vitro approach, which, when combined are extremely useful for assessing chemogenomic links. In this chapter we mostly focus on the mining of already existing data through machine learning methods. This approach allows establishing predictions that map the chemical space and the receptor space. Then, we describe the method for assessing the activation of odorant receptors and their mutants through luciferase reporter gene functional assays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-8609-5_7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!