High-mobility group box 1 (HMGB1) is a highly conserved DNA-binding nuclear protein that facilitates gene transcription and the DNA repair response. However, HMGB1 may be released by necrotic cells as well as activated monocytes and macrophages following stimulation with lipopolysaccharide (LPS), interleukin-1β (IL-1β), or tumor necrosis factor-α (TNF-α). Extracellular HMGB1 plays a critical role in the pathogenesis of acute lung injury (ALI) through activating the nuclear transcription factor κB (NF-κB) P65 pathway, thus, it may be a promising therapeutic target in shock-induced ALI. Paeonol (Pae) is the main active component of Paeonia suffruticosa, which has been used to inhibit the inflammatory response in traditional Chinese medicine. We have proven that Pae inhibits the expression, relocation and secretion of HMGB1 in vitro. However, the role of Pae in the HMGB1-NF-κB pathway remains unknown. We herein investigated the role of Pae in LPS-induced ALI rats. In this study, LPS induced a marked decrease in the mean arterial pressure (MAP) and survival rate (only 25% after 72 h), and induced severe pathological changes in the lung tissue of rats, which was accompanied by elevated expression of HMGB1 and its downstream protein NF-κB P65. Treatment with Pae significantly improved the survival rate (>60%) and MAP, and attenuated the pathological damage to the lung tissue in ALI rats. Western blotting revealed that Pae also inhibited the total expression of HMGB1, NF-κB P65 and TNF-α in the lung tissue of ALI rats. Moreover, Pae increased the expression of HMGB1 in the nucleus, inhibited the production of HMGB1 in the cytoplasm, and decreased the expression of P65 both in the nucleus and cytoplasm of lung tissue cells in LPS-induced ALI rats. The results were in agreement with those observed in the in vitro experiment. These findings indicate that Pae may be a potential treatment for ALI through its repression of the HMGB1-NF-κB P65 signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2018.05.032 | DOI Listing |
Intensive Care Med Exp
January 2025
Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China.
Background: Sepsis-induced acute lung injury (S-ALI) significantly contributes to unfavorable clinical outcomes. Emerging evidence suggests a novel role for ferroptosis in the pathophysiology of ALI, though the precise mechanisms remain unclear. Mild hypothermia (32-34 °C) has been shown to inhibit inflammatory responses, reduce oxidative stress, and regulate metabolic processes.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, 7618868367, Iran.
Background: Paraquat (PQ) is a widely used pesticide, can cause severe intoxication and respiratory failure. Myrtenol (Mrl), an essential oil derived in various plants, exhibits several biological properties, including anti-inflammatory and antioxidant activities. This study aims to investigate the protective potential of Mrl against oxidative stress and inflammation caused by PQ exposure.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Medical Microbiology, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region-F.R., Iraq.
Klebsiella pneumoniae is a non-motile, encapsulated, environmental gram-negative bacterium. Once the bacteria have infiltrated the body, they can display substantial degrees of resistance to drugs and virulence. Extended Spectrum Beta-Lactamases (ESBLs) are most typically seen in K.
View Article and Find Full Text PDFBurns
December 2024
Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
This study focused on the potential of Gliricidia sepium (Jacq.) Kunth. ex.
View Article and Find Full Text PDFPhytother Res
January 2025
Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India.
Background And Aim: Hepatic encephalopathy (HE) is a complex neurological disorder in individuals with liver diseases, necessitating effective neuroprotective interventions to alleviate its adverse outcomes. Berberine (BBR), a natural compound with well-established anti-fibrotic and neuroprotective properties, has not been extensively studied in the context of glial activation under hyperammonaemic conditions. This study evaluates the neuroprotective potential of BBR in a thioacetamide (TAA)-induced HE rat model, focusing on its effects on glial activation and NLRP3 inflammasome signalling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!