A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photoreductive dissolution of schwertmannite induced by oxalate and the mobilization of adsorbed As(V). | LitMetric

AI Article Synopsis

  • Schwertmannite (Sch) is a poorly crystalline iron mineral that can absorb arsenate (As(V)) and undergoes dissolution influenced by both UV light and oxalate at pH 3.0.
  • UV irradiation increases the dissolution of Fe from Sch and Sch*-As(V), primarily converting Fe(III) into the more soluble Fe(II) form when oxalate is present.
  • The presence of oxalate significantly reduces the mobilization of As(V) under UV light, indicating that UV treatment can help immobilize As(V) in environments rich in oxalate.

Article Abstract

Schwertmannite (Sch), a poorly crystalline iron mineral, shows high sorption capacity to As(V). In this study, the effects of UV irradiation and oxalate on the dissolution of pure Sch, Sch with adsorbed As(V) [Sch*-As(V)] and subsequent mobilization of As(V) were investigated at pH 3.0. Under UV irradiation, the dissolved Fe(II) took the majority of the total dissolved Fe during the dissolution of Sch and Sch*-As(V). In the presence of oxalate, Fe(III)-oxalate complexes formed on Sch [or Sch*-As(V)] could be converted into Fe(II)-oxalate by photo-generated electrons under UV illumination, and more total dissolved Fe produced compared to that without oxalate. In the dark, total dissolved Fe reached the maximum value (42.64 mg L for Sch) rapidly and existed as Fe(III) predominately. In addition, UV irradiation has almost no effect on the mobilization of As(V) in Sch*-As(V) in the absence of oxalate. However, in the presence of oxalate, UV irradiation resulted in the mobilization of As(V) declined by 14-36.5 times compared to that in the dark. This study enhanced our understanding on the mobilization of As(V), and UV irradiation could contribute to the immobilization of As(V) on Sch in the aquatic environments containing oxalate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.05.187DOI Listing

Publication Analysis

Top Keywords

mobilization asv
16
total dissolved
12
asv
8
adsorbed asv
8
presence oxalate
8
irradiation mobilization
8
oxalate
7
sch
7
mobilization
5
irradiation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!