Methane, the primary component of natural gas, is the second most abundant greenhouse gas (GHG) and contributes significantly to climate change. The conversion of methane to industrial platform chemicals provides an attractive opportunity to decrease GHG emissions and utilize this inexpensive and abundantly available gas as a carbon feedstock. While technologies exist for chemical conversion of methane to liquid fuels, the technical complexity of these processes mandate high capital expenditure, large-scale commercial facilities to leverage economies of scale that cannot be efficiently scaled down. Alternatively, bioconversion technologies capable of efficient small-scale operation with high carbon and energy efficiency can enable deployment at remote methane resources inaccessible to current chemical technologies. Aerobic obligate methanotrophs, specifically Methylomicrobium buryatense 5GB1, have recently garnered increased research interest for development of such bio-technologies. In this study, we demonstrate production of C-4 carboxylic acids non-native to the host, specifically crotonic and butyric acids, from methane in an engineered M. buryatense 5GB1C by diversion of carbon flux through the acetyl-CoA node of central 'sugar' linked metabolic pathways using reverse β-oxidation pathway genes. The synthesis of short chain carboxylic acids through the acetyl-CoA node demonstrates the potential for engineering M. buryatense 5GB1 as a platform for bioconversion of methane to a number of value added industrial chemicals, and presents new opportunities for further diversifying the products obtainable from methane as the feedstock.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2018.06.001DOI Listing

Publication Analysis

Top Keywords

carboxylic acids
12
bioconversion methane
8
c-4 carboxylic
8
carbon flux
8
flux acetyl-coa
8
methylomicrobium buryatense
8
buryatense 5gb1c
8
conversion methane
8
buryatense 5gb1
8
acetyl-coa node
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!