Plasmodium falciparum PfRH5 protein binds Ripr, CyRPA and Pf113 to form a complex that is essential for merozoite invasion of erythrocytes. The inter-genomic conservation of the PfRH5 complex proteins makes them attractive blood stage vaccine candidates. However, little is known about how antibodies to PfRH5, CyRPA and Pf113 are acquired and maintained in naturally exposed populations, and the role of PfRH5 complex proteins in naturally acquired immunity. To provide such data, we studied 206 Ghanaian children between the ages of 1-12 years, who were symptomatic, asymptomatic or aparasitemic and healthy. Plasma levels of antigen-specific IgG and IgG subclasses were measured by ELISA at several time points during acute disease and convalescence. On the day of admission with acute P. falciparum malaria, the prevalence of antibodies to PfRH5-complex proteins was low compared to other merozoite antigens (EBA175, GLURP-R0 and GLURP-R2). At convalescence, the levels of RH5-complex-specific IgG were reduced, with the decay of PfRH5-specific IgG being slower than the decay of IgG specific for CyRPA and Pf113. No correlation between IgG levels and protection against P. falciparum malaria was observed for any of the PfRH5 complex proteins. From this we conclude that specific IgG was induced against proteins from the PfRH5-complex during acute P. falciparum malaria, but the prevalence was low and the IgG levels decayed rapidly after treatment. These data indicate that the levels of IgG specific for PfRH5-complex proteins in natural infections in Ghanaian children were markers of recent exposure only.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993283PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198371PLOS

Publication Analysis

Top Keywords

falciparum malaria
16
ghanaian children
12
cyrpa pf113
12
pfrh5 complex
12
complex proteins
12
igg
9
plasmodium falciparum
8
acute falciparum
8
malaria prevalence
8
pfrh5-complex proteins
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!