is a ubiquitous, soil-borne fungus (ascomycete) causing foot and root rot and Fusarium head blight on cereals. It is responsible for yield and quality losses as well as grain contamination with mycotoxins, which are a potential health hazard. An extremely sensitive mitochondrial-based qPCR assay (FcMito qPCR) for quantification of was developed in this study. To provide specificity, the FcMito assay was successfully validated against 85 strains and 53 isolates of 30 other fungal species. The assay efficiency and sensitivity were evaluated against different strains with various amounts of pure fungal DNA and in the presence of background wheat DNA. The results demonstrated the high efficiency of the assay (97.2⁻106.0%, R²-values > 0.99). It was also shown that, in the presence of background DNA, 0.01 pg of fungal template could be reliably quantified. The FcMito assay was used to quantify DNA using 108 grain samples with different trichothecene levels. A significant positive correlation was found between fungal DNA quantity and the total trichothecene content. The obtained results showed that the sensitivity of the FcMito assay was much higher than the nuclear-based qPCR assay for .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983267PMC
http://dx.doi.org/10.3390/toxins10050211DOI Listing

Publication Analysis

Top Keywords

qpcr assay
12
fcmito assay
12
fcmito qpcr
8
assay
8
fungal dna
8
presence background
8
fcmito
5
fungal
5
dna
5
development highly
4

Similar Publications

Ulcerative colitis (UC) remains an intractable and relapsing disease featured by intestinal inflammation. The anti-UC activity of Akkermansia muciniphila (AKK), an intestinal microorganism, has been widely investigated. The current work is to explore the impacts of AKK on UC and its possible reaction mechanism.

View Article and Find Full Text PDF

Background/aims: Colon adenocarcinoma (COAD) is a prevalent malignant tumor of the digestive system. Previous research has indicated that RNA N6-methyladenosine (m6A) methyltransferase RNA-binding motif protein-15 (RBM15) is involved in various cancers. We aimed to investigate the function of RBM15 in COAD progression and its underlying molecular mechanism.

View Article and Find Full Text PDF

Bioactive glass 45S5 promotes odontogenic differentiation of apical papilla cells through autophagy.

Hua Xi Kou Qiang Yi Xue Za Zhi

February 2025

Dept. of Cariology and Endodontics, Binzhou Medical University Hospital, Binzhou 256600, China.

Objectives: The mechanism of the odontogenic differentiation of apical papillary cells (APCs) stimulated by bioactive glass 45S5 is still unclear. This study aims to investigate the effect of autophagy on the odontogenic differentiation of APCs stimulated by bioactive glass 45S5.

Methods: APCs were isolated and cultured , and the cell origin was identified by flow cytometry.

View Article and Find Full Text PDF

is a well-known plant used in oriental medicine plant, and is also serves as the primary traditional source of plant red dyestuffs. With the current depletion of natural resources of , it is critical to conduct cultivation studies on the . Here, we report on the dynamic growth characteristics and secondary metabolite accumulation of cultivated , as well as the discovery of important genes involved in anthraquinone biosynthesis.

View Article and Find Full Text PDF

Specific and sensitive detection of bovine coronavirus using CRISPR-Cas13a combined with RT-RAA technology.

Front Vet Sci

January 2025

Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China.

Introduction: Bovine coronavirus (BCoV) is an important pathogen of enteric and respiratory disease in cattle, resulting in huge economic losses to the beef and dairy industries worldwide. A specific and sensitive detection assay for BCoV is critical to the early-stage disease prevention and control.

Methods: We established a specific, sensitive, and stable assay for BCoV nucleic acid detection based on CRISPR/Cas13a combined with reverse transcription recombinase-aided amplification (RT-RAA) technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!