Osteocytes Specific GSK3 Inhibition Affects In Vitro Osteogenic Differentiation.

Biomedicines

Department of Biomedical, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Via Largo del Pozzo 71, 41124 Modena, Italy.

Published: May 2018

Osteocytes, the most important regulators of bone processes, are producers of molecules (usually proteins) that act as signals in order to communicate with nearby cells. These factors control cell division (proliferation), differentiation, and survival. Substantial evidence showed different signaling pathways activated by osteocytes and involved in osteoblast differentiation, in particular in the last decade, when the Wingless-related integration site (WNT) pathway assumed a critical large importance. WNT activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism, making GSK3 a potential therapeutic target for bone diseases. In our study, we hypothesized an important role of the osteocyte MLO-Y4 conditioned medium in controlling the differentiation process of osteoblast cell line 2T3. We found an effect of diminished differentiation capability of 2T3 upon conditioning with medium from murine long bone osteocyte-Y4 cells (MLO-Y4) pre-treated with GSK3 inhibitor CHIR2201. The novel observations of this study provide knowledge about the inhibition of GSK3 in MLO-Y4 cells. This strategy could be used as a plausible target in osteocytes in order to regulate bone resorption mediated by a loss of osteoblasts activity through a paracrine loop.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027076PMC
http://dx.doi.org/10.3390/biomedicines6020061DOI Listing

Publication Analysis

Top Keywords

differentiation
5
bone
5
osteocytes
4
osteocytes specific
4
gsk3
4
specific gsk3
4
gsk3 inhibition
4
inhibition vitro
4
vitro osteogenic
4
osteogenic differentiation
4

Similar Publications

Objective: Scleroderma-associated autoantibodies (SSc-Abs) are specific in participants (pts) with systemic sclerosis and are associated with organ involvement. Our objective was to assess the influence of baseline SSc-Abs on the trajectories of the clinical outcome assessments (COAs) in a phase III randomized controlled trial.

Methods: We used data on both the groups who received placebo (Pbo) and tocilizumab from the focuSSced trial.

View Article and Find Full Text PDF

The application of biological therapy and glucocorticoids in Auto-immune diseases (AID) patients will cause immunocompromised host (ICH) prone to infection. And monocytes play a key role in both innate and adaptive immune responses. We aimed to investigate the changes of circulating monocyte subsets in AID or AID-ICH patients with pulmonary infection.

View Article and Find Full Text PDF

Gonadotroph neuroendocrine pituitary tumors are among the most common intracranial neoplasms. A notable proportion of these tumors is characterized by invasive growth which hampers the treatment results and worsens prognoses of patients. Increased hsa-miR-184 expression was observed in invasive as compared to non-invasive gonadotroph tumors.

View Article and Find Full Text PDF

Deciphering the toxic effects of polystyrene nanoparticles on erythropoiesis at single-cell resolution.

Zool Res

January 2025

Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea.

Polystyrene nanoparticles pose significant toxicological risks to aquatic ecosystems, yet their impact on zebrafish ( ) embryonic development, particularly erythropoiesis, remains underexplored. This study used single-cell RNA sequencing to comprehensively evaluate the effects of polystyrene nanoparticle exposure on erythropoiesis in zebrafish embryos. validation experiments corroborated the transcriptomic findings, revealing that polystyrene nanoparticle exposure disrupted erythrocyte differentiation, as evidenced by the decrease in mature erythrocytes and concomitant increase in immature erythrocytes.

View Article and Find Full Text PDF

Lateral Atrial Expression Patterns Provide Insights into Local Transcription Disequilibrium Contributing to Disease Susceptibility.

Circ Genom Precis Med

January 2025

CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands.

Background: Transcriptional dysregulation, possibly affected by genetic variation, contributes to disease development. Due to dissimilarities in development, function, and remodeling during disease progression, transcriptional differences between the left atrial (LA) and right atrial (RA) may provide insight into diseases such as atrial fibrillation.

Methods: Lateral differences in atrial transcription were evaluated in CATCH ME (Characterizing Atrial fibrillation by Translating its Causes into Health Modifiers in the Elderly) using a 2-stage discovery and replication design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!