Glyphosate, which is commercially available as Roundup®, was the widely used herbicide in Sri Lanka until 2015 and is suspected to be one of the causal factors for Chronic Kidney Disease of unknown etiology (CKDu). This research, therefore, aims at studying the presence of glyphosate and Aminomethylphosphonic acid (AMPA) in different environmental matrices in CKDu prevalent areas. Topsoil samples from agricultural fields, water samples from nearby shallow wells and lakes, and sediment samples from lakes were collected and analyzed for glyphosate and AMPA using the LC/MS. Glyphosate (270-690 µg/kg) and AMPA (2-8 µg/kg) were detected in all soil samples. Amorphous iron oxides and organic matter content of topsoil showed a strong and a moderate positive linear relationship with glyphosate. The glyphosate and inorganic phosphate levels in topsoil had a strong negative significant linear relationship. Presence of high valence cations such as Fe and Al in topsoil resulted in the formation of glyphosate-metal complexes, thus strong retention of glyphosate in soil. Lower levels of AMPA than the corresponding glyphosate levels in topsoil could be attributed to factors such as the strong adsorption capacity of glyphosate to soil and higher LOQ in the quantification of AMPA. The glyphosate levels of lakes were between 28 to 45 µg/L; no AMPA was detected. While trace levels of glyphosate (1-4 µg/L) were detected in all groundwater samples, AMPA (2-11µg/L) was detected only in four out of nine samples. Glyphosate was detected in all sediment samples (85-1000 µg/kg), and a strong linear relationship with the organic matter content was observed. AMPA was detected (1-15 µg/kg) in seven out of nine sediment samples. It could be inferred that the impact on CKDu by the levels of glyphosate and AMPA detected in the study area is marginal when compared with the MCL of the USEPA (700 µg/L).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03601234.2018.1480157 | DOI Listing |
Mol Biol Rep
January 2025
Agricultural Research Center(ARC), Sugar Crops Research Institute(SCRI), Giza, Egypt.
Background: Glyphosate is an extensively employed herbicide in agriculture, specifically for sugarcane cultivation. The situation is different with the extensive physiological and genetic effects exerted by this herbicide on a range of plant species, including sugarcane, whose model basis is still poorly characterized, although its primary mode of action, which acts on the EPSPS enzyme in the shikimic acid pathway, is completely elucidated. The current study was aimed at investigating the stability of glyphosate formulation, molecular interactions of glyphosate formulation with rbcL enzyme associated with chlorophyll metabolism, and its effects on varieties of sugarcane.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Center for Applied Geoscience, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany.
Aminopolyphosphonates (APPs) are widely used as chelating agents, and their increasing release into the environment has raised concerns due to their transformation into aminomethylphosphonic acid (AMPA) and glyphosate, compounds of controversial environmental impact. This transformation highlights the urgent need for detailed studies under controlled conditions. Despite the availability of various methods for quantifying individual aminopolyphosphonates and aminomonophosphonates, a green, low-cost approach for the simultaneous quantification of APPs and their transformation products in laboratory experiments has been lacking.
View Article and Find Full Text PDFmSystems
January 2025
Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Gluconeogenesis, the reciprocal pathway of glycolysis, is an energy-consuming process that generates glycolytic intermediates from non-carbohydrate sources. In this study, we demonstrate that robust and efficient gluconeogenesis in bacteria relies on the allosteric inactivation of pyruvate kinase, the enzyme responsible for the irreversible final step of glycolysis. Using the model bacterium as an example, we discovered that pyruvate kinase activity is inhibited during gluconeogenesis via its extra C-terminal domain (ECTD), which is essential for autoinhibition and metabolic regulation.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany.
are ubiquitous algae and occasional pathogens of humans and animals. While rare, the infection is often fatal and treatment options are limited to antifungals with low efficiency. Here, using growth curve assays, we demonstrate that five pathogenic species of () were fully inhibited by 50-100 μg/mL of herbicide glyphosate, suggesting novel pathways that can be considered for anti-algal drug development.
View Article and Find Full Text PDFPest Manag Sci
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
Background: Long-term use of chemical weed control has led to some weedy species evolving herbicide resistance traits with fitness advantage. Our previous studies revealed glyphosate resistance in an Eleusine indica population due to copy number variation of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) comes with fitness advantage under non-competitive conditions. Here, transcriptomics and targeted metabolomics were used to investigate physiological basis associated with the fitness advantage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!