We propose a spatiotemporal quench protocol that allows for the fast preparation of ground states of gapless models with Lorentz invariance. Assuming the system initially resides in the ground state of a corresponding massive model, we show that a superluminally moving "front" that locally quenches the mass, leaves behind it (in space) a state arbitrarily close to the ground state of the gapless model. Importantly, our protocol takes time O(L) to produce the ground state of a system of size ∼L^{d} (d spatial dimensions), while a fully adiabatic protocol requires time ∼O(L^{2}) to produce a state with exponential accuracy in L. The physics of the dynamical problem can be understood in terms of relativistic rarefaction of excitations generated by the mass front. We provide proof of concept by solving the proposed quench exactly for a system of free bosons in arbitrary dimensions, and for free fermions in d=1. We discuss the role of interactions and UV effects on the free-theory idealization, before numerically illustrating the usefulness of the approach via simulations on the quantum Heisenberg spin chain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.120.210604 | DOI Listing |
Adv Mater
January 2025
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Type-II multiferroicity from non-collinear spin order is recently explored in the van der Waals material NiI. Despite the importance for improper ferroelectricity, the microscopic mechanism of the helimagnetic order remains poorly understood. Here, the magneto-structural phases of NiI are investigated using resonant magnetic X-ray scattering (RXS) and X-ray diffraction.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia.
In this research, the photophysical properties of metformin hydrochloride (MF-HCl) were studied using spectroscopic and molecular docking techniques. The interaction between metformin hydrochloride and caffeine is essential for understanding the pharmacokinetics of metformin, particularly in populations with high caffeine consumption. Metformin is a first-line medication for managing type 2 diabetes, while caffeine is a widely consumed dietary stimulant.
View Article and Find Full Text PDFSci Rep
January 2025
Computational Physics Key Laboratory of Sichuan Province, Yibin University, Yibin, China.
The potential energy curves, dipole moments and transition dipole moments of the 14 Λ-S states and 30 Ω states of TlBr cation were performed using the multi-reference configuration interaction method. The Davidson correction and spin-orbit coupling effects were also considered. The spectroscopic properties and transition properties of TlBr cation were reported at the first time.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Quantum Inspired and Quantum Optimization, Hamburg University of Technology, Hamburg, Germany.
Estimation of the energy of quantum many-body systems is a paradigmatic task in various research fields. In particular, efficient energy estimation may be crucial in achieving a quantum advantage for a practically relevant problem. For instance, the measurement effort poses a critical bottleneck for variational quantum algorithms.
View Article and Find Full Text PDFInt J Nurs Stud
December 2024
School of Nursing and Midwifery, Edith Cowen University, Australia. Electronic address:
Background: Recognition and response to clinical deterioration of hospitalised patients is a worldwide health priority area. In response to this concern, international bodies have implemented early warning systems to help clinicians keep people safe and prevent patient deterioration. Registered nurses hold a significant role in managing care provision and utilise early warning system tools to support their clinical judgement when making decisions about patient care.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!