3D Microcontact Printing for Combined Chemical and Topographical Patterning on Porous Cell Culture Membrane.

ACS Appl Mater Interfaces

Department of Nanobiosystem Technology, Institute of Micro- and Nanotechnologies MacroNano, Institute of Chemistry and Biotechnology , Ilmenau University of Technology, 98693 Ilmenau , Germany.

Published: July 2018

Micrometer-scale biochemical or topographical patterning is commonly used to guide the cell attachment and growth, but the ability to combine these patterns into an integrated surface with defined chemical and geometrical characteristics still remains a technical challenge. Here, we present a technical solution for simultaneous construction of 3D morphologies, in the form of channels, on porous membranes along with precise transfer of extracellular matrix proteins into the channels to create patterns with geometrically restricting features. By combining the advantages of microthermoforming and microcontact printing, this technique offers a unique patterning process that provides spatiotemporal control over morphological and chemical feature in a single step. By use of our 3D-microcontact printing (3DμCP), determined microstructures like channels with different depths and widths even with more complex patterns can be fabricated. Collagen, fibronectin, and laminin were successfully transferred inside the predesigned geometries, and the validity of the process was confirmed by antibody staining. Cells cultivated on 3DμCP patterned polycarbonate membrane have shown selective adhesion and growth. This technique offers a novel tool for creating freeform combinatorial patterning on the thermoformable surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b06585DOI Listing

Publication Analysis

Top Keywords

microcontact printing
8
topographical patterning
8
technique offers
8
printing combined
4
combined chemical
4
chemical topographical
4
patterning
4
patterning porous
4
porous cell
4
cell culture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!