Nanoplatforms for biomolecule delivery to the lymph nodes have attracted considerable interest as vectors for immunotherapy. Core-shell iron oxide nanoparticles are particularly appealing because of their potential as theranostic magnetic resonance imaging (MRI)-trackable vehicles for biomolecule delivery. The key challenge for utilizing iron oxide nanoparticles in this capacity is control of their coating shells to produce particles with predictable size. Size determines both the carrier capacity for biomolecule display and the carrier ability to target the lymph nodes. In this study, we develop a novel coating method to produce core-shell iron oxide nanoparticles with controlled size. We utilize lipidlike molecules to stabilize self-assembled lipid shells on the surface of iron oxide nanocrystals, allowing the formation of consistent coatings on nanocrystals of varying size (10-40 nm). We further demonstrate the feasibility of leveraging the ensuing control of nanocarrier size for optimizing the carrier functionalities. Coated nanoparticles with 10 and 30 nm cores supported biomolecule display at 10-fold and 200-fold higher capacities than previously reported iron oxide nanoparticles, while preserving monodisperse sub-100 nm size populations. In addition, accumulation of the coated nanoparticles in the lymph nodes could be tracked by MRI and at 1 h post injection demonstrated significantly enhanced lymph node targeting. Notably, lymph node targeting was 9-40 folds higher than that for previously reported nanocarriers, likely due to the ability of these nanoparticles to robustly maintain their sub-100 nm size in vivo. This approach can be broadly applicable for rational design of theranostic nanoplatforms for image-monitored immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b02830DOI Listing

Publication Analysis

Top Keywords

iron oxide
24
oxide nanoparticles
16
lymph node
12
node targeting
12
biomolecule display
12
lymph nodes
12
magnetic resonance
8
biomolecule delivery
8
core-shell iron
8
coated nanoparticles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!