Magnetohydrodynamics (MHD) is becoming more popular every day among developers of applications based on microfluidics, such as “lab on a chip” (LOC) and/or “micro-total analysis systems” (micro-TAS). Its physical properties enable fluid manipulation for tasks such as pumping, networking, propelling, stirring, mixing, and even cooling without the need for mechanical components, and its non-intrusive nature provides a solution to mechanical systems issues. However, these are not easy tasks. They all require precise flow control, which depends on several parameters, like microfluidics conductivity, the microfluidics conduit (channel) shape and size configuration, and the interaction between magnetic and electric fields. This results in a mathematical model that needs to be validated theoretically and experimentally. The present paper introduces the design of a 3D laminar flow involving an electrolyte in an annular open channel driven by a Lorentz force. For an organized description, first of all is provided an introduction to MHD applied in microfluidics, then an overall description of the proposed MHD microfluidic system is given, after that is focused in the theoretical validation of the mathematical model, next is described the experimental validation of the mathematical model using a customized vision system, and finally conclusions and future work are stated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021981PMC
http://dx.doi.org/10.3390/s18061683DOI Listing

Publication Analysis

Top Keywords

mathematical model
16
validation mathematical
12
vision system
8
electrolyte magnetohydrondyamics
4
magnetohydrondyamics flow
4
flow sensing
4
sensing open
4
open annular
4
annular channel-a
4
channel-a vision
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!