Studies of phage capsids have at least three potential interfaces with nanomedicine. First, investigation of phage capsid states potentially will provide therapies targeted to similar states of pathogenic viruses. Recently detected, altered radius-states of phage T3 capsids include those probably related to intermediate states of DNA injection and DNA packaging (dynamic states). We discuss and test the idea that some T3 dynamic states include extensive α-sheet in subunits of the capsid’s shell. Second, dynamic states of pathogenic viral capsids are possible targets of innate immune systems. Specifically, α-sheet-rich innate immune proteins would interfere with dynamic viral states via inter-α-sheet co-assembly. A possible cause of neurodegenerative diseases is excessive activity of these innate immune proteins. Third, some phage capsids appear to have characteristics useful for improved drug delivery vehicles (DDVs). These characteristics include stability, uniformity and a gate-like sub-structure. Gating by DDVs is needed for (1) drug-loading only with gate opened; (2) closed gate-DDV migration through circulatory systems (no drug leakage-generated toxicity); and (3) drug release only at targets. A gate-like sub-structure is the connector ring of double-stranded DNA phage capsids. Targeting to tumors of phage capsid-DDVs can possibly be achieved via the enhanced permeability and retention effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024614 | PMC |
http://dx.doi.org/10.3390/v10060307 | DOI Listing |
Poult Sci
January 2025
Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan. Electronic address:
Escherichia coli (E. coli) is a widely distributed pathogenic bacterium that poses a substantial hazard to poultry, leading to the development of a severe systemic disease known as colibacillosis. Colibacillosis is involved in multimillion-dollar losses to the poultry industry each year worldwide.
View Article and Find Full Text PDFSci Rep
January 2025
School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
Many bacteriophages modulate host transcription to favor expression of their own genomes. Phage satellite P4 polarity suppression protein, Psu, a building block of the viral capsid, inhibits hexameric transcription termination factor, ρ, by presently unknown mechanisms. Our cryogenic electron microscopy structures of ρ-Psu complexes show that Psu dimers clamp two inactive, open ρ rings and promote their expansion to higher-oligomeric states.
View Article and Find Full Text PDFPathogens
December 2024
Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA 92697-3900, USA.
Concatemeric viral DNA is packaged into bacteriophage P22 procapsids via a headful packaging mechanism mediated by a molecular machine consisting of small (gp3) and large (gp2) terminase subunits. Although a negative stain reconstruction exists for the terminase holoenzyme, it is not clear how this complex binds the dodecameric portal protein located at a 5-fold mismatch vertex. Herein, we describe new assemblies for the holoenzyme.
View Article and Find Full Text PDFJ Clin Microbiol
December 2024
Department of Pediatrics, University of Florida, Gainesville, Florida, USA.
Cholera rapid diagnostic tests (RDTs) are vulnerable to virulent bacteriophage predation. We hypothesized that an enhanced cholera RDT that detects the common virulent bacteriophage ICP1 might serve as a proxy for pathogen detection. We previously developed a monoclonal antibody (mAb) to the ICP1 major capsid protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!