Compactness and versatility of fiber-based micro-supercapacitors (FMSCs) make them promising for emerging wearable electronic devices as energy storage solutions. But, increasing the energy storage capacity of microscale fiber electrodes, while retaining their high power density, remains a significant challenge. Here, this issue is addressed by incorporating ultrahigh mass loading of ruthenium oxide (RuO ) nanoparticles (up to 42.5 wt%) uniformly on nanocarbon-based microfibers composed largely of holey reduced graphene oxide (HrGO) with a lower amount of single-walled carbon nanotubes as nanospacers. This facile approach involes (1) space-confined hydrothermal assembly of highly porous but 3D interconnected carbon structure, (2) impregnating wet carbon structures with aqueous Ru ions, and (3) anchoring RuO nanoparticles on HrGO surfaces. Solid-state FMSCs assembled using those fibers demonstrate a specific volumetric capacitance of 199 F cm at 2 mV s . Fabricated FMSCs also deliver an ultrahigh energy density of 27.3 mWh cm , the highest among those reported for FMSCs to date. Furthermore, integrating 20 pieces of FMSCs with two commercial flexible solar cells as a self-powering energy system, a light-emitting diode panel can be lit up stably. The current work highlights the excellent potential of nano-RuO -decorated HrGO composite fibers for constructing micro-supercapacitors with high energy density for wearable electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201800582DOI Listing

Publication Analysis

Top Keywords

energy density
12
nano-ruo -decorated
8
composite fibers
8
ultrahigh energy
8
wearable electronic
8
electronic devices
8
energy storage
8
ruo nanoparticles
8
energy
6
fmscs
5

Similar Publications

The reasonable design of advanced anode materials for electrochemical energy storage (EES) devices is crucial in expediting the progress of renewable energy technologies. NbO has attracted increasing research attention as an anode candidate. Defect engineering is regarded as a feasible approach to modulate the local atomic configurations within NbO.

View Article and Find Full Text PDF

The human visual nervous system excels at recognizing and processing external stimuli, essential for various physiological functions. Biomimetic visual systems leverage biological synapse properties to improve memory encoding and perception. Optoelectronic devices mimicking these synapses can enhance wearable electronics, with layered heterojunction materials being ideal materials for optoelectronic synapses due to their tunable properties and biocompatibility.

View Article and Find Full Text PDF

Two-dimensional inverse double sandwich CoB: strain-induced non-magnetic to ferromagnetic transition.

Phys Chem Chem Phys

January 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

A full-scale structural search was performed using density functional theory calculations and a universal structural prediction evolutionary algorithm. This produced a lowest energy two-dimensional (2D) CoB structure. The CoB-1 global minimum structure has unusual inverse double sandwich features.

View Article and Find Full Text PDF

Fluorine-free organic framework polyelectrolyte membranes showing near frictionless ionic conductivities are gaining cognitive insights. However, the co-precipitation of COFs in the membranes often brings trade-offs to commission long-life electrochemical energy storage solutions. Herein, a durable and ionically miscible dual-ion exchange membrane based on triazine organic framework (TOF) is designed for alkaline redox flow batteries (RFB).

View Article and Find Full Text PDF

Two Steps Li Ion Storage Mechanism in Ruddlesden-Popper LiLaTiO.

Adv Sci (Weinh)

January 2025

Emerging Materials R&D Division, Korea Institute of Ceramic Engineering & Technology, Jinju, Gyeongnam, 52851, Republic of Korea.

Innovative anode materials are essential for achieving high-energy-density lithium-ion batteries (LIBs) with longer lifetimes. Thus far, only a few studies have explored the use of layered perovskite structures as LIB anode materials. In this study, the study demonstrates the performance and charge/discharge mechanism of the previously undefined Ruddlesden-Popper Li₂La₂Ti₃O₁₀ (RPLLTO) as an anode material for LIBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!