Key Points: Advanced maternal age increases the risk of pregnancy complications such as fetal growth restriction, hypertension and premature birth. Offspring born from compromised pregnancies are at increased risk of cardiovascular disease as adults. However, the effect of advanced maternal age on later-onset disease in offspring has not been investigated. In adulthood, male but not female offspring born to dams of advanced maternal age showed impaired recovery from cardiac ischaemia/reperfusion injury. Endothelium-dependent relaxation was also impaired in male but not female offspring born from aged dams. Oxidative stress may play a role in the developmental programming of cardiovascular disease in this model. Given the increasing trend toward delayed parenthood, these findings have significant population and health care implications and warrant further investigation.

Abstract: Exposure to prenatal stressors, including hypoxia, micro- and macronutrient deficiency, and maternal stress, increases the risk of cardiovascular disease in adulthood. It is unclear whether being born from a mother of advanced maternal age (≥35 years old) may also constitute a prenatal stress with cardiovascular consequences in adulthood. We previously demonstrated growth restriction in fetuses from a rat model of advanced maternal age, suggesting exposure to a compromised in utero environment. Thus, we hypothesized that male and female offspring from aged dams would exhibit impaired cardiovascular function as adults. In 4-month-old offspring, we observed impaired endothelium-dependent relaxation in male (P < 0.05) but not female offspring born from aged dams. The anti-oxidant polyethylene glycol superoxide dismutase improved relaxation only in arteries from male offspring of aged dams (ΔE : young dam -1.63 ± 0.80 vs. aged dam 11.75 ± 4.23, P < 0.05). Furthermore, endothelium-derived hyperpolarization-dependent relaxation was reduced in male but not female offspring of aged dams (P < 0.05). Interestingly, there was a significant increase in nitric oxide contribution to relaxation in females born from aged dams (ΔE : young dam -24.8 ± 12.1 vs. aged dam -68.7 ± 7.7, P < 0.05), which was not observed in males. Recovery of cardiac function following an ischaemia-reperfusion insult in male offspring born from aged dams was reduced by ∼57% (P < 0.001), an effect that was not evident in female offspring. These data indicate that offspring born from aged dams have an altered cardiovascular risk profile that is sex-specific. Given the increasing trend toward delaying pregnancy, these findings may have significant population and health care implications and warrant further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265548PMC
http://dx.doi.org/10.1113/JP275472DOI Listing

Publication Analysis

Top Keywords

advanced maternal
24
maternal age
24
cardiovascular disease
16
offspring born
16
male female
12
female offspring
12
disease offspring
8
born dams
8
dams advanced
8
increases risk
8

Similar Publications

Artificial intelligence (AI), defined as algorithms built to reproduce human behavior, has various applications in health care such as risk prediction, medical image classification, text analysis, and complex disease diagnosis. Due to the increasing availability and volume of data, especially from electronic health records, AI technology is expanding into all fields of nursing and medicine. As the health care system moves toward automation and computationally driven clinical decision-making, nurses play a vital role in bridging the gap between the technological output, the patient, and the health care team.

View Article and Find Full Text PDF

Study Question: How are the changing maternal age structure and population growth expected to shape future twinning rates in low-income countries?

Summary Answer: With maternal age at birth projected to shift toward older ages, twinning rates are also estimated to increase in most low-income countries by 2050 and even more by 2100.

What Is Known Already: Many of the sub-Saharan African and South Asian countries are undergoing, and projected to further experience, the shift of maternal age at birth to older ages. Advanced maternal age is a well-established predictor of multiple births at the individual level, but currently, it is unknown how the changes in maternal age distribution are associated with the changes in twinning rates at the population level in low-income countries.

View Article and Find Full Text PDF

This review covers the latest developments on the regulation of early seed development by phytohormones. The development of seeds in flowering plants starts with the fertilization of the maternal gametes by two paternal sperm cells. This leads to the formation of two products, embryo and endosperm, which are surrounded by a tissue of maternal sporophytic origin, called the seed coat.

View Article and Find Full Text PDF

We investigated the cost-effectiveness of treating iron deficiency anemia (IDA) with ferric citrate hydrate (FC) in Japan. We employed four treatment strategies: switching from sodium ferrous citrate (SF) to FC at (1) 500 mg (approximately 120 mg of iron) per day or (2) 1000 mg (approximately 240 mg of iron) per day in patients with SF-induced nausea/vomiting, or starting treatment with FC at (3) 500 mg/day or (4) 1000 mg/day. We evaluated the cost-effectiveness of these strategies compared with SF 100 mg (100 mg of iron) per day.

View Article and Find Full Text PDF

Objectives: Birthweight prediction in fetal development presents a challenge in direct measurement and often depends on empirical formulas based on the clinician's experience. Existing methods suffer from low accuracy and high execution times, limiting their clinical effectiveness. This study aims to introduce a novel approach integrating feature-wise linear modulation (FiLM), gated recurrent unit (GRU), and Attention network to improve birthweight prediction using ultrasound data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!