The ability of the agricultural residue of Phragmites australis to serve as an absorbent material used to remove phenol from aqueous solutions in batch and continuous fixed-bed columns was investigated. Prepared adsorbents were characterized by SEM, FTIR, and pHpzc methods. The equilibrium adsorption (qe) of phenol was increased from 9.61 to 29.40 mg/g when the initial phenol concentrations increased from 50 to 150 mg/L. The max adsorption capacity of Phragmites australis was found to be 29.60 mg/g at 30 °C. In column studies, a higher flow rate, higher initial concentration of phenol, and shorter packing layer height increase the column adsorption capacity of phenol. In a batch and continuous fixed-bed column studies, the experiment data was evaluated by some classic models. Fitting degree between the experimental results shows that the pseudo-second-order adsorption kinetics and Langmuir model were the best. Thomas and Yoon-Nelson models were in good agreement with the experimental breakthrough curve data. Both batch and continuous investigation indicated that Phragmites australis could be used as a fine adsorbent to remove phenol and that the adsorption efficiency improved significantly in the column experiment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-018-2457-5 | DOI Listing |
Plants (Basel)
December 2024
School of Professional Studies Huasteca Zone, Autonomous University of San Luis Potosí, Ciudad Valles, San Luis Potosí 79060, Mexico.
The contamination of rivers by potentially toxic elements (PTEs) is a problem of global importance. The Valles River is Ciudad Valles' (Central Mexico) main source of drinking water. During the four seasons of the year, water samples (n = 6), sediment samples (n = 6), and plants (n = 10) were taken from three study sites selected based on the presence of anthropogenic activities in the Valles River.
View Article and Find Full Text PDFWater Res
January 2025
Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Shanghai 200241, China. Electronic address:
Environ Sci Pollut Res Int
January 2025
Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 15875-4413, Iran.
This study presents a novel, eco-friendly method for removing methyldiethanolamine (MDEA) from wastewater, addressing its environmental impact and elevated chemical oxygen demand (COD) from gas refineries. We employed two wetland plants, Phragmites australis and Typha latifolia, utilizing a hydroponics approach to assess MDEA removal efficiency. Wastewater samples from the Ilam gas refinery in Iran were tested at varying initial concentrations (50 to 1600 ppm) over three consecutive 7-day periods, with a 1-day rest interval.
View Article and Find Full Text PDFHorizontal subsurface flow constructed wetlands (HFCWs) are capable of eliminating organic matter and nitrogen while emitting less methane (CH) and nitrous oxide (NO) than free water surface flow wetlands. However, the simultaneous removal of pollutants and reduction of greenhouse gases (GHG) emissions from high-strength wastewater containing high levels of organic matter and ammonium nitrogen (NH-N) has not get been investigated. The influent COD concentration affected the efficiency of nitrogen removal, GHG emissions and the presence of iron from iron ore, but the COD and TP removal efficiencies remained unaffected.
View Article and Find Full Text PDFSci Total Environ
December 2024
Centre for Competence in Environmental Biotechnology, College of Sciences, Environment and Technology, University of South Africa, Florida Science Campus, South Africa.
This study investigated the microbial diversity inhabiting the roots (rhizosphere) of macrophytes thriving along the Blesbokspruit wetland, South Africa's least conserved Ramsar site. The wetland suffers from decades of pollution from mining wastewater, agriculture, and sewage. The current study focused on three macrophytes: Phragmites australis (common reed), Typha capensis (bulrush), and Eichhornia crassipes (water hyacinth).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!