The aim of the present study was to explore the role of lncRNA ANRIL in the pathogenesis of ischemic stroke (IS) and coronary artery disease (CAD) and to determine the association between ANRIL variants and the genetic susceptibility of IS and CAD in the Chinese Han population. A genetic association study including 550 IS patients, 550 CAD patients, and 550 healthy controls was conducted. The expression levels of lncRNA ANRIL, CDKN2A, and CDKN2B were detected using qRT-PCR. Genotyping was performed by Sequenom MassARRAY on an Agena platform. Our study showed that IS patients had an increased lncRNA ANRIL expression (P = 0.002) and a decreased CDKN2A expression (P < 0.001) compared with normal controls. A significant difference with regard to the genotype distribution of rs2383207 was found between male IS patients and controls (P = 0.011). The minor allele of rs2383207 significantly increased the IS risk under a recessive model (OR = 1.52, 95% CI = 1.05-2.21, P = 0.027). The minor allele of rs1333049 was significantly associated with the risk of IS among the male patients under a recessive model (OR = 1.56, 95% CI = 1.04-2.35, P = 0.031). However, no significant association was found between the ANRIL variants and the risk of CAD (all P > 0.050). In addition, we found a decreased lncRNA ANRIL expression in IS patients who carried the GG genotype of rs1333049 compared with IS patients who carried the CC or CG genotype (P = 0.041). In summary, we found that IS patients had an increased lncRNA ANRIL expression and a decreased CDKN2A expression compared with the controls, which might play an impellent role in pathological processes of IS. The ANRIL variants rs2383207 and rs1333049 were significantly associated with the risk of IS among males but not females in the Chinese Han population.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-018-0593-6DOI Listing

Publication Analysis

Top Keywords

lncrna anril
24
anril expression
16
chinese han
12
han population
12
anril
8
ischemic stroke
8
anril variants
8
patients 550
8
patients increased
8
increased lncrna
8

Similar Publications

Long non-coding ribonucleic acids (lncRNAs) have been implicated as possible circulating stroke indicators. This study focused on the expression status of antisense non-coding ribonucleic acid in the INK4 locus (ANRIL) and myocardial infarction associated transcript (MIAT) in patients with cerebral venous thrombosis (CVT). In this study, fifty patients with CVT and one hundred age/gender-matched individuals as controls were included.

View Article and Find Full Text PDF

Despite the advancements and release of new therapeutics in the past few years, cardiovascular diseases (CVDs) have remained the number one cause of death worldwide. Genetic variation of a 9p21.3 genomic locus has been identified as the most significant and robust genetic CVD risk marker on the population level, with the strongest association with coronary artery disease (CAD) and other diseases, including diabetes and cancer.

View Article and Find Full Text PDF

ANRIL's Epigenetic Regulation and Its Implications for Cardiovascular Disorders.

J Biochem Mol Toxicol

December 2024

Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia.

Cardiovascular disorders (CVDs) are a major global health concern, but their underlying molecular mechanisms are not fully understood. Recent research highlights the role of long noncoding RNAs (lncRNAs), particularly ANRIL, in cardiovascular development and disease. ANRIL, located in the human genome's 9p21 region, significantly regulates cardiovascular pathogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Idiopathic pulmonary fibrosis (IPF) is a serious lung disease marked by progressive worsening of lung function caused by excessive scarring.
  • This study found that the long non-coding RNA ANRIL is significantly increased in IPF, promoting fibroblast activation and contributing to fibrosis.
  • The research suggests that ANRIL influences fibrosis via its interaction with the microRNA let-7d-5p and that TGFBR1 may mediate its effects, positioning ANRIL as a potential therapeutic target for treating pulmonary fibrosis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!