Recently we have proposed an effective Hartree-Fock (EHF) theory for the electrons of the muonic molecules that is formally equivalent to the HF theory within the context of the nuclear-electronic orbital theory [Phys. Chem. Chem. Phys., 2018, 20, 4466]. In the present report we extend the muon-specific effective electronic structure theory beyond the EHF level by introducing the effective second order Møller-Plesset perturbation theory (EMP2) and the effective coupled-cluster theory at single and double excitation levels (ECCSD) as well as an improved version including perturbative triple excitations (ECCSD(T)). These theories incorporate electron-electron correlation into the effective paradigm and through their computational implementation, a diverse set of small muonic species is considered as a benchmark at these post-EHF levels. A comparative computational study on this set demonstrates that the muonic bond length is in general non-negligibly longer than corresponding hydrogenic analogs. Next, the developed post-EHF theories are applied for the muoniated N-heterocyclic carbene/silylene/germylene and the muoniated triazolium cation revealing the relative stability of the sticking sites of the muon in each species. The computational results, in line with previously reported experimental data demonstrate that the muon generally prefers to attach to the divalent atom with carbeneic nature. A detailed comparison of these muonic adducts with the corresponding hydrogenic adducts reveals subtle differences that have already been overlooked.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp02489h | DOI Listing |
Vaccines (Basel)
December 2024
Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
HIV causes intense polyclonal activation of B cells, resulting in increased numbers of spontaneously antibody-secreting cells in the circulation and hypergammaglobulinemia. It is accompanied by significant perturbations in various B cell subsets, such as increased frequencies of immature/transitional B cells, activated memory B cells, atypical memory B cells, short-lived plasmablasts and regulatory B cells, as well as by decreased frequencies of resting memory and resting naïve B cells. Furthermore, both memory and antigen-inexperienced naïve B cells show exhausted and immune-senescent phenotypes.
View Article and Find Full Text PDFMicroorganisms
December 2024
VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic.
Daunorubicin (DNR) is an anthracycline antibiotic originating from soil-dwelling actinobacteria extensively used to treat malignant tumors. Over the decades, extensive attempts were made to enhance the production of anthracyclines by introducing genetic modifications and mutations in combination with media optimization, but the target production levels remain comparatively low. Developing an appropriate culture medium to maximize the yield of DNR and preventing autotoxicity for the producing organism remains a challenge.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Laboratory of Nanobiotechnologies, Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, Saint Petersburg 194021, Russia.
: A series of spiro-fused heterocyclic compounds containing cyclopropa[a]pyrrolizidine-2,3'-oxindole and 3-spiro[3-azabicyclo[3.1.0]-hexane]oxindole frameworks were synthesized and studied for their in vitro antiproliferative activity against human erythroleukemia (K562), cervical carcinoma (HeLa), acute T cell leukemia (Jurkat), melanoma (Sk-mel-2) and breast cancer (MCF-7) as well as mouse colon carcinoma (CT26) cell lines.
View Article and Find Full Text PDFMolecules
December 2024
DNA Damage Laboratory of the Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.
Each cell in the human body is continually exposed to harmful external and internal factors. During evolution, cells have developed various defence systems, divided into enzymatic and non-enzymatic types, to which low-weight molecule antioxidants belong. In this article, the ionisation potential and electron affinity, as well as global reactivity descriptors of Vitamin C, Melatonin, Uric Acids, and N-acetyl-L-cysteine, were theoretically investigated at the MP-2/aug-cc-pVTZ level of theory in the condensed (aqueous) phase.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
Thyroid hormone receptor alpha (THR) is a nuclear hormone receptor that binds triiodothyronine (T3) and acts as an important transcription factor in development, metabolism, and reproduction. The coding gene, , has two major splicing isoforms in mammals, and , which encode THR1 and THR1, respectively. The better characterized isoform, THR1, is a transcriptional stimulator of genes involved in cell metabolism and growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!